Trans-AI/DS: transformative, transdisciplinary and translational artificial intelligence and data science
Tóm tắt
After the many ups and downs over the past 70 years of AI and 50 years of data science (DS), AI/DS have migrated into their new age. This new-generation AI/DS build on the consilience and universology of science, technology and engineering. In particular, it synergizes AI and data science, inspiring Trans-AI/DS (i.e., Trans-AI, Trans-DS and their hybridization) thinking, vision, paradigms, approaches and practices. Trans-AI/DS feature their transformative (or transformational), transdisciplinary, and translational AI/DS in terms of thinking, paradigms, methodologies, technologies, engineering, and practices. Here, we discuss these important paradigm shifts and directions. Trans-AI/DS encourage big and outside-the-box thinking beyond the classic AI, data-driven, model-based, statistical, shallow and deep learning hypotheses, methodologies and developments. They pursue foundational and original AI/DS thinking, theories and practices from the essence of intelligences and complexities inherent in humans, nature, society, and their creations.
Tài liệu tham khảo
Cao, L.: A new age of AI: features and futures. IEEE Intell. Syst. 37(1), 25–37 (2022)
Wikipedia: History of Artificial Intelligence (2023). https://en.wikipedia.org/wiki/History_of_artificial_intelligence/
Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. 50(3), 43–14342 (2017)
Donoho, D.: 50 years of data science. J. Comput. Gr. Stat. 26(4), 745–766 (2017)
Cao, L.: AI science and engineering: a new field. IEEE Intell. Syst. 37(1), 3–13 (2022)
Cao, L.: Data Science Thinking: The Next Scientific. Technological and Economic Revolution. Data Analytics. Springer, Switzerland (2018)
Grossi, V., Giannotti, F., Pedreschi, D., Manghi, P., Pagano, P., Assante, M.: Data science: a game changer for science and innovation. Int. J. Data Sci. Anal. 11(4), 263–278 (2021)
Siebes, A.: Data science as a language: challenges for computer science - a position paper. Int. J. Data Sci. Anal. 6(3), 177–187 (2018)
Kauermann, G., Seidl, T.: Data science: a proposal for a curriculum. Int. J. Data Sci. Anal. 6(3), 195–199 (2018)
Renn, O.: Transdisciplinarity: synthesis towards a modular approach. Futures 130, 102744 (2021)
Butler, D.: Translational research: crossing the valley of death. Nature 453, 840–842 (2008)
Dankwa-Mullan, I., Rhee, K., Stoff, D., Pohlhaus, J., Sy, F., Stinson, N.J., Ruffin, J.: Moving toward paradigm-shifting research in health disparities through translational, transformational, and transdisciplinary approaches. Am. J. Public Health 100(Suppl 1), 19–24 (2010)
Trevors, J.T., Pollack, G.H., Saier, M.H., Masson, L.: Transformative research: definitions, approaches and consequences. Theory Biosci. 131, 117–123 (2012)
Bernstein, J.: Transdisciplinarity: a review of its origins, development, and current issues. J. Res. Pract. 11, 1–20 (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Massachusetts (2016)
Cao, L.: Beyond AutoML: mindful and actionable AI and AutoAI with mind and action. IEEE Intell. Syst. 37(5), 6–18 (2022)
Cao, L.: Beyond i.i.d.: non-IID thinking, informatics, and learning. IEEE Intell. Syst. 37(4), 5–17 (2022)
Cao, L.: Decentralized AI: edge intelligence and smart blockchain, metaverse, web3, and desci. IEEE Intell. Syst. 37(03), 6–19 (2022)
Weihs, C., Ickstadt, K.: Data science: the impact of statistics. Int. J. Data Sci. Anal. 6(3), 189–194 (2018)
Sáez, R.V.: Open science in the digital era. PhD thesis, Aalto University, Espoo, Finland (2021). PhD thesis. https://aaltodoc.aalto.fi/handle/123456789/109975
Gruetzemacher, R., Whittlestone, J.: The transformative potential of artificial intelligence. CoRR (2019) arXiv:1912.00747
Cao, L.: Metasynthetic Computing and Engineering of Complex Systems. Advanced Information and Knowledge Processing. Springer, London (2015)
Yin, X., Zhu, Y., Hu, J.: A comprehensive survey of privacy-preserving federated learning: a taxonomy, review, and future directions. ACM Comput. Surv. 54(6), 131–113136 (2022)
Cao, L., Yang, Q., Yu, P.S.: Data science and AI in FinTech: an overview. Int. J. Data Sci. Anal. 12(2), 81–99 (2021)
OpenAI: ChatGPT: Optimizing Language Models for Dialogue (2022). https://openai.com/blog/chatgpt/
Tolk, A., Harper, A., Mustafee, N.: Hybrid models as transdisciplinary research enablers. Eur. J. Op. Res. 291(3), 1075–1090 (2021)
Bryon, E.: Transdisciplinary and interdisciplinary exchanges between embodied cognition and performance practice: working across disciplines in a climate of divisive knowledge cultures. Connect. Sci. 29(1), 2–20 (2017)
Anthony, R.: Beyond Positive Thinking 30th Anniversary Edition: A No Nonsense Formula for Getting What You Want. Morgan James Publishing, US (2018)
Frost, J.: Hypothesis Testing: An Intuitive Guide for Making Data Driven Decisions. Statistics By Jim Publishing, Costa Mesa (2020)
Hailpern, B., Tarr, P.L.: Model-driven development: the good, the bad, and the ugly. IBM Syst. J. 45(3), 451–462 (2006)
Jasinska-Piadlo, A., Bond, R., Biglarbeigi, P., Brisk, R., Campbell, P., Browne, F., McEneaneny, D.: Data-driven versus a domain-led approach to k-means clustering on an open heart failure dataset. Int. J. Data Sci. Anal. (2022)
Vernon, V.: Implementing Domain-driven Design. Addison-Wesley, Massachusetts (2013)
Cao, L., Yu, P.S., Zhang, C., Zhao, Y.: Domain Driven Data Mining. Springer, New York (2010)
Keiningham, T., Aksoy, L., Bruce, H.L., Cadet, F., Clennell, N., Hodgkinson, I.R., Kearney, T.: Customer experience driven business model innovation. J. Bus. Res. 116, 431–440 (2020)
Cao, L.: Non-iidness learning in behavioral and social data. Comput. J. 57(9), 1358–1370 (2014)
Ma, S., Liu, L., Li, J., Le, T.D.: Data-driven discovery of causal interactions. Int. J. Data Sci. Anal. 8, 285–297 (2019)
Alves, G., Amblard, M., Bernier, F., Couceiro, M., Napoli, A.: Reducing unintended bias of ML models on tabular and textual data. In: DSAA, pp. 1–10 (2021)
Denison, D., Mallick, B., Smith, A.: Automatic bayesian curve fitting. J. R. Stat. Soc. Ser. B 60(2), 333–350 (1998)
Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)
Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: CVPR’2021, pp. 5830–5840 (2021)
Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Zhao, Z., Cao, L., Lin, K.-Y.: Revealing the distributional vulnerability of discriminators by implicit generators. IEEE Trans. Pattern Anal. Mach. Intell. (2022). https://doi.org/10.1109/TPAMI.2022.3229318
Shalev-Shwartz, S., Shamir, O., Shammah, S.: Failures of gradient-based deep learning. In: International Conference on Machine Learning, pp. 3067–3075 (2017)
Korkmaz, E.: Investigating vulnerabilities of deep neural policies. In: Uncertainty in Artificial Intelligence, pp. 1661–1670 (2021)
Qian, X., Yu, J., Dai, R.: A new discipline of science - the study of open complex giant systems and its methodology. Chin. J. Syst. Eng. Electr. 4(2), 2–12 (1993)
Hargittai, I.: Drive and Curiosity: What Fuels the Passion for Science. Prometheus Books, New York (2010)
Hart, C.: Doing a Literature Review: Releasing the Research Imagination. SAGE Publications, California (2018)
Reyes, F.R.F.: Abstractions to control the future. PhD thesis, Uppsala University, Sweden (2021). https://nbn-resolving.org/urn:nbn:se:uu:diva-425128
Ciriminna, R., Simakova, I.L., Pagliaro, M., Murzin, D.Y.: A scientometric analysis of catalysis research. J. Sci. Res. 9(3), 335–343 (2020)
Zhang, Y., Zhang, X., Shen, T., Zhou, Y., Wang, Z.: Feature-option-action: a domain adaption transfer reinforcement learning framework. In: DSAA, pp. 1–12 (2021)
Monteiro, J., Martins, B., Pires, J.M.: A hybrid approach for the spatial disaggregation of socio-economic indicators. Int. J. Data Sci. Anal. 5, 189–211 (2018)
Varlamis, I., Sardianos, C., Chronis, C., Dimitrakopoulos, G., Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A.: Using big data and federated learning for generating energy efficiency recommendations. Int. J. Data Sci. Anal. (2022)
Petitdemange, F., Borne, I., Buisson, J.: Design process for system of systems reconfigurations. Syst. Eng. 24(2), 69–82 (2021)
Betz, A., Kimsey-House, K.: Integration: The Power of Being Co-Active in Work and Life. Changemakers Books, New Alresford (2015)
Cao, L., Dai, R., Zhou, M.: Metasynthesis: M-space, M-interaction, and M-computing for open complex giant systems. IEEE Trans. Syst. Man Cybern. Part A 39(5), 1007–1021 (2009)
Farina, G., Sandholm, T.: Model-free online learning in unknown sequential decision making problems and games. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 5381–5390 (2021)
Waldrop, M.M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Simon and Schuster, New York (1993)
Conole, G.: Designing for Learning in an Open World. Springer, Berlin (2012)
Lübbering, M., Gebauer, M., Ramamurthy, R., Bauckhage, C., Sifa, R.: Bounding open space risk with decoupling autoencoders in open set recognition. Int. J. Data Sci. Anal. 14(4), 351–373 (2022)
Burt, C.: How the mind works (1933)
Cao, L.: Data science and analytics: a new era. Int. J. Data Sci. Anal. 1(1), 1–2 (2016)