Huấn luyện mẫu boson Gauss bằng học máy lượng tử
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arrazola JM, et al. (2021) Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591:54
Ballarini D, Gianfrate A, Panico R, Opala A, Ghosh S, Dominici L, Ardizzone V, Giorgi MD, Lerario G, Gigli G, Liew TCH, Matuszewski M, Sanvitto D (2020) . Nano Lett 20:3506
Barnett SM, Radmore PM (1997) Methods in theoretical quantum optics. Oxford University Press , New York
Broome MA, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph TC, White AG (2013) Photonic boson sampling in a tunable circuit. Science 339:794
Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Niu MY, Halavati R, Peters E, Leib M, Skolik A, Streif M, Dollen DV, McClean JR, Boixo S, Bacon D, Ho AK, Neven H, Mohseni M (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989
Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L. (2019) Machine learning and the physical sciences. Rev Mod Phys 91:045002
Carolan J, Meinecke JDA, Shadbolt PJ, Russell NJ, Ismail N, Wörhoff K., Rudolph T, Thompson MG, O’Brien JL, Matthews JCF, Laing A (2014) On the experimental verification of quantum complexity in linear optics. Nat Photonics 8:621
Fratalocchi A, Fleming A, Conti C, Falco AD (2021) Nist-certified secure key generation via deep learning of physical unclonable functions in silica aerogels. Nanophotonics 10:457
Gardiner CW, Zoller P (2004) Quantum noise, 3rd edn. Springer, Berlin
Hamilton CS, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I (2017) Gaussian boson sampling. Phys Rev Lett 119:170501
Huang H-Y, Kueng R, Torlai G, Albert VV, Preskill J (2021) arXiv:2106.1267
Hughes TW, Williamson IA, Minkov M, Fan S (2019) Wave physics as an analog recurrent neural network. Sci. Adv. 5 eaay6946
Hoch F, et al. (2021) Boson sampling in a reconfigurable continuously-coupled 3d photonic circuit. arXiv:2106.08260
Johansson J, Nation P, Nori F (2013) A python framework for the dynamics of open quantum systems. Comput Phys Commun 184:1234
Kruse R, Hamilton CS, Sansoni L, Barkhofen S, Silberhorn C, Jex I (2019) A detailed study of gaussian boson sampling. Phys Rev A 100:032326
Leedumrongwatthanakun S, Innocenti L, Defienne H, Juffmann T, Ferraro A, Paternostro M, Gigan S (2020) Programming linear quantum networks with a multimode fiber. Nat Photonics 14:139
Li Y, Chen M, Chen Y, Lu H, Gan L, Lu C, Pan J, Fu H, Yang G (2020) Benchmarking 50-photon gaussian boson sampling on the sunway taihulight. arXiv:2009.01177
Lumino A, Polino E, Rab AS, Milani G, Spagnolo N, Wiebe N, Sciarrino F (2018) Experimental phase estimation enhanced by machine learning. Phys Rev Appl 10:044033
Mangini S, Tacchino F, Gerace D, Bajoni D, Macchiavello C (2021) Quantum computing models for artificial neural networks. arXiv:2102.03879
Marcucci G, Pierangeli D, Pinkse PWH, Malik M, Conti C (2020) Programming multi-level quantum gates in disordered computing reservoirs via machine learning. Opt Express 28:14018
Marcucci G, Pierangeli D, Conti C (2020) Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys Rev Lett 125:093901
Melnikov AA, Sekatski P, Sangouard N (2020) Setting up experimental bell tests with reinforcement learning. Phys Rev Lett 125:160401
Nokkala J, Martínez-Peña R, Giorgi GL, Parigi V, Soriano MC, Zambrini R (2020) Gaussian states provide universal and versatile quantum reservoir computing. arXiv:2006.04821
Pilozzi L, Farrelly FA, Marcucci G, Conti C (2021) Topological nanophotonics and artificial neural networks. Nanotechnology 32:142001
Quesada N, Arrazola JM, Killoran N (2018) Gaussian boson sampling using threshold detectors. Phys Rev A 98:062322
Quesada N, Arrazola JM (2020) Exact simulation of gaussian boson sampling in polynomial space and exponential time. Phys Rev Res 2:023005
Sgroi P, Palma GM, Paternostro M (2021) Reinforcement learning approach to nonequilibrium quantum thermodynamics. Phys Rev Lett 126:026601
Spagnolo N, Vitelli C, Bentivegna M, Brod DJ, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvão EF, Sciarrino F (2014) Experimental validation of photonic boson sampling. Nat Photonics 8:615
Spring JB, Metcalf BJ, Humphreys PC, Kolthammer WS, Jin XM, Barbieri M, Datta A, Thomas-Peter N, Langford NK, Kundys D, Gates JC, Smith BJ, Smith PGR, Walmsley IA (2013) Boson sampling on a photonic chip. Science 339:798
Taballione C, Wolterink TAW, Lugani J, Eckstein A, Bell BA, Grootjans R, Visscher I, Geskus D, Roeloffzen CGH, Renema JJ, Walmsley IA, Pinkse PWH, Boller KJ (2019) Reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt Express 27:26842
Tillmann M, Dakić B., Heilmann R, Nolte S, Szameit A, Walther P (2012) Experimental boson sampling. Nat Photonics 7:540
Valencia NH, Goel S, McCutcheon W, Defienne H, Malik M (2020) Unscrambling entanglement through a complex medium. Nat Phys 16:1112
Vicentini F, Biella A, Regnault N, Ciuti C (2019) Variational neural network ansatz for steady states in open quantum systems. Phys Rev Lett 122:250503
Wang H, Qin J, Ding X, Chen MC, Chen S, You X, He YM, Jiang X, You L, Wang Z, Schneider C, Renema JJ, Höfling S, Lu CY, Pan JW (2019) Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space. Phys Rev Lett 123:250503
Wang X, Hiroshima T, Tomita A, Hayashi M (2007) Quantum information with gaussian states. Phys Rep 448:1
Zhong HS, Wang H, Deng YH, Chen MC, Peng LC, Luo YH, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang XY, Zhang WJ, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu NL, Lu CY, Pan JW (2020) Quantum computational advantage using photons. Science 370:1460
Zhong H-S, et al. (2021) arXiv:2106.15534