Huấn luyện mẫu boson Gauss bằng học máy lượng tử

Claudio Conti1,2,3
1Institute for Complex Systems, National Research Council (ISC-CNR), Rome, Italy
2Research Center Enrico Fermi, Rome, Italy
3Department of Physics, University of Sapienza, Rome, Italy

Tóm tắt

Tóm tắtChúng tôi sử dụng mạng nơ-ron để biểu diễn hàm đặc trưng của các trạng thái Gauss nhiều hạt trong không gian pha lượng tử. Bằng cơ chế kéo ngược, chúng tôi mô hình hóa các phép biến đổi do các toán tử đơn vị tạo ra dưới dạng các lớp tuyến tính có thể xếp chồng lên nhau để mô phỏng các quá trình đa hạt phức tạp. Chúng tôi sử dụng các mạng nơ-ron nhiều lớp cho sự lan truyền ánh sáng phi cổ điển trong các giao thoa ngẫu nhiên và tính toán xác suất mẫu boson bằng cách phân biệt tự động. Đây là một chiến lược khả thi cho việc huấn luyện mẫu boson Gauss. Chúng tôi chứng minh rằng các sự kiện đa hạt trong mẫu boson Gauss có thể được tối ưu hóa thông qua thiết kế và huấn luyện thích hợp trọng số của mạng nơ-ron. Các kết quả này có thể hữu ích cho việc tạo ra các nguồn ánh sáng mới và các mạch phức tạp cho các công nghệ lượng tử.

Từ khóa


Tài liệu tham khảo

Aaronson S, Arkhipov A (2013) The computational complexity of linear optics. Theory Comput 9:143

Arrazola JM, et al. (2021) Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591:54

Ballarini D, Gianfrate A, Panico R, Opala A, Ghosh S, Dominici L, Ardizzone V, Giorgi MD, Lerario G, Gigli G, Liew TCH, Matuszewski M, Sanvitto D (2020) . Nano Lett 20:3506

Banchi L, Quesada N, Arrazola JM (2020) . Phys Rev A 102:012417

Barnett SM, Radmore PM (1997) Methods in theoretical quantum optics. Oxford University Press , New York

Broome MA, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph TC, White AG (2013) Photonic boson sampling in a tunable circuit. Science 339:794

Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Niu MY, Halavati R, Peters E, Leib M, Skolik A, Streif M, Dollen DV, McClean JR, Boixo S, Bacon D, Ho AK, Neven H, Mohseni M (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989

Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L. (2019) Machine learning and the physical sciences. Rev Mod Phys 91:045002

Carolan J, Meinecke JDA, Shadbolt PJ, Russell NJ, Ismail N, Wörhoff K., Rudolph T, Thompson MG, O’Brien JL, Matthews JCF, Laing A (2014) On the experimental verification of quantum complexity in linear optics. Nat Photonics 8:621

Fratalocchi A, Fleming A, Conti C, Falco AD (2021) Nist-certified secure key generation via deep learning of physical unclonable functions in silica aerogels. Nanophotonics 10:457

Gardiner CW, Zoller P (2004) Quantum noise, 3rd edn. Springer, Berlin

Hamilton CS, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I (2017) Gaussian boson sampling. Phys Rev Lett 119:170501

Huang H-Y, Kueng R, Torlai G, Albert VV, Preskill J (2021) arXiv:2106.1267

Hughes TW, Williamson IA, Minkov M, Fan S (2019) Wave physics as an analog recurrent neural network. Sci. Adv. 5 eaay6946

Hoch F, et al. (2021) Boson sampling in a reconfigurable continuously-coupled 3d photonic circuit. arXiv:2106.08260

Johansson J, Nation P, Nori F (2013) A python framework for the dynamics of open quantum systems. Comput Phys Commun 184:1234

Kruse R, Hamilton CS, Sansoni L, Barkhofen S, Silberhorn C, Jex I (2019) A detailed study of gaussian boson sampling. Phys Rev A 100:032326

Leedumrongwatthanakun S, Innocenti L, Defienne H, Juffmann T, Ferraro A, Paternostro M, Gigan S (2020) Programming linear quantum networks with a multimode fiber. Nat Photonics 14:139

Li Y, Chen M, Chen Y, Lu H, Gan L, Lu C, Pan J, Fu H, Yang G (2020) Benchmarking 50-photon gaussian boson sampling on the sunway taihulight. arXiv:2009.01177

Lumino A, Polino E, Rab AS, Milani G, Spagnolo N, Wiebe N, Sciarrino F (2018) Experimental phase estimation enhanced by machine learning. Phys Rev Appl 10:044033

Marković D, Grollier J (2020) Quantum neuromorphic computing. Appl Phys Lett 117:150501

Mangini S, Tacchino F, Gerace D, Bajoni D, Macchiavello C (2021) Quantum computing models for artificial neural networks. arXiv:2102.03879

Marquardt F (2021) Machine learning and quantum devices. arXiv:2101.01759

Marcucci G, Pierangeli D, Pinkse PWH, Malik M, Conti C (2020) Programming multi-level quantum gates in disordered computing reservoirs via machine learning. Opt Express 28:14018

Marcucci G, Pierangeli D, Conti C (2020) Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys Rev Lett 125:093901

Melnikov AA, Sekatski P, Sangouard N (2020) Setting up experimental bell tests with reinforcement learning. Phys Rev Lett 125:160401

Nokkala J, Martínez-Peña R, Giorgi GL, Parigi V, Soriano MC, Zambrini R (2020) Gaussian states provide universal and versatile quantum reservoir computing. arXiv:2006.04821

Pilozzi L, Farrelly FA, Marcucci G, Conti C (2021) Topological nanophotonics and artificial neural networks. Nanotechnology 32:142001

Quesada N, Arrazola JM, Killoran N (2018) Gaussian boson sampling using threshold detectors. Phys Rev A 98:062322

Quesada N, Arrazola JM (2020) Exact simulation of gaussian boson sampling in polynomial space and exponential time. Phys Rev Res 2:023005

Silva NA, Ferreira TD, Guerreiro A (2021) Reservoir computing with solitons. J New Phys 23:023013

Sgroi P, Palma GM, Paternostro M (2021) Reinforcement learning approach to nonequilibrium quantum thermodynamics. Phys Rev Lett 126:026601

Spagnolo N, Vitelli C, Bentivegna M, Brod DJ, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvão EF, Sciarrino F (2014) Experimental validation of photonic boson sampling. Nat Photonics 8:615

Spring JB, Metcalf BJ, Humphreys PC, Kolthammer WS, Jin XM, Barbieri M, Datta A, Thomas-Peter N, Langford NK, Kundys D, Gates JC, Smith BJ, Smith PGR, Walmsley IA (2013) Boson sampling on a photonic chip. Science 339:798

Taballione C, Wolterink TAW, Lugani J, Eckstein A, Bell BA, Grootjans R, Visscher I, Geskus D, Roeloffzen CGH, Renema JJ, Walmsley IA, Pinkse PWH, Boller KJ (2019) Reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt Express 27:26842

Tillmann M, Dakić B., Heilmann R, Nolte S, Szameit A, Walther P (2012) Experimental boson sampling. Nat Photonics 7:540

Valencia NH, Goel S, McCutcheon W, Defienne H, Malik M (2020) Unscrambling entanglement through a complex medium. Nat Phys 16:1112

Vicentini F, Biella A, Regnault N, Ciuti C (2019) Variational neural network ansatz for steady states in open quantum systems. Phys Rev Lett 122:250503

Wang H, Qin J, Ding X, Chen MC, Chen S, You X, He YM, Jiang X, You L, Wang Z, Schneider C, Renema JJ, Höfling S, Lu CY, Pan JW (2019) Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space. Phys Rev Lett 123:250503

Wang X, Hiroshima T, Tomita A, Hayashi M (2007) Quantum information with gaussian states. Phys Rep 448:1

Zhao C, Gao X-S (2021) Qdnn: deep neural networks with quantum layers. Quantum Mach Intell 3:15

Zhong HS, Wang H, Deng YH, Chen MC, Peng LC, Luo YH, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang XY, Zhang WJ, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu NL, Lu CY, Pan JW (2020) Quantum computational advantage using photons. Science 370:1460

Zhong H-S, et al. (2021) arXiv:2106.15534