Theo dõi bệnh dã ngoại bằng khoa học cộng đồng: một ví dụ về myiasis ở ếch

Springer Science and Business Media LLC - Tập 68 - Trang 1-8 - 2022
Tamara Szentivanyi1, Orsolya Vincze2,3
1Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
2Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
3Centre for Ecological Research-DRI, Debrecen, Hungary

Tóm tắt

Việc giám sát ký sinh trùng và tác nhân gây bệnh là rất quan trọng để hiểu các xu hướng phân bố và quang phổ vật chủ của chúng, cũng như để ghi nhận sự thay đổi trong động lực học quần thể của chúng. Tuy nhiên, việc giám sát liên tục tiêu tốn thời gian, thiếu kinh phí do bản chất không thu hút của ký sinh trùng/tác nhân gây bệnh, và cơ sở hạ tầng nghiên cứu thường chỉ được giới hạn cho các nỗ lực giám sát ngắn hạn. Dữ liệu quan sát các loài từ công chúng có thể đóng góp vào giám sát lâu dài các ký sinh trùng bằng cách sử dụng chứng cứ bằng hình ảnh về các trường hợp nhiễm bệnh được chia sẻ trên các nền tảng khoa học cộng đồng. Ở đây, chúng tôi đã sử dụng các kho hình ảnh công cộng để ghi nhận sự xuất hiện của Lucilia spp. (Diptera: Calliphoridae), một ký sinh trùng gây myiasis ở mũi ếch châu Âu Bufo bufo (Anura: Bufonidae) qua không gian và thời gian. Chúng tôi đã tìm thấy tổng cộng 262 quan sát myiasis ếch trên iNaturalist (n = 132), trên GBIF (n = 86), trên Flickr (n = 41) và trên observation.org (n = 3). Kết quả của chúng tôi chỉ ra rằng sự phân bố của myiasis ếch bị giới hạn theo khu vực, mặc dù vật chủ của nó được phân bố rộng rãi và phong phú trên một vùng rộng lớn ở châu Âu. Các quan sát được tìm thấy ở 12 quốc gia với tỷ lệ tương đối thấp, bao gồm Bỉ (3,90%, CI 2,44–6,18), Đan Mạch (1,26%, CI 0,89–1,80), Pháp (0,45%, CI 0,14–1,38), Đức (1,27%, CI 0,92–1,75), Litva (0,50%, CI 0,13–1,98), Luxembourg (1,30%, CI 0,42–3,95), Hà Lan (2,71%, CI 1,61–4,52), Ba Lan (0,89%, CI 0,34–2,35), Nga (Tỉnh Kaliningrad) (4,76%, CI 0,67–27,14), Thụy Sĩ (NA), Ucraina (0,87%, CI 0,12–5,91) và Anh (0,45%, CI 0,28–0,72). Tuy nhiên, số lượng các quan sát được tải lên về cả sự nhiễm bệnh của ký sinh trùng và sự hiện diện của vật chủ cho thấy một sự gia tăng ổn định có thể do sự gia tăng phổ biến của các trang web khoa học cộng đồng. Nhìn chung, khoa học cộng đồng là công cụ hữu ích để phát hiện và giám sát một số bệnh dã ngoại và để nhận diện những thay đổi tiềm năng trong động lực học bệnh qua thời gian và không gian.

Từ khóa

#Zoology #Ecology #Fish & Wildlife Biology & Management

Tài liệu tham khảo

Altizer S, Hochachka WM, Dhondt AA et al (2004) Seasonal dynamics of mycoplasmal conjunctivitis in Eastern North American house finches. J Anim Ecol 73:309–322 Arias-Robledo G, Stark T, Wall RL, Stevens JR (2019a) The toad fly Lucilia bufonivora: its evolutionary status and molecular identification. Med Vet Entomol 33:131–139. https://doi.org/10.1111/mve.12328 Arias-Robledo G, Wall R, Szpila K et al (2019b) Ecological and geographical speciation in Lucilia bufonivora: the evolution of amphibian obligate parasitism. Int J Parasitol Parasites Wildl 10:218–230. https://doi.org/10.1016/j.ijppaw.2019.09.005 Bartel RA, Oberhauser KS, De Roode JC, Altizer SM (2011) Monarch butterfly migration and parasite transmission in eastern North America. Ecology 92:342–351. https://doi.org/10.1890/10-0489.1 Bartumeus F, Oltra A, Palmer JRB (2018) Citizen science: a gateway for innovation in disease-carrying mosquito management? Trends Parasitol 34:727–729. https://doi.org/10.1016/j.pt.2018.04.010 Berger L, Marantelli G, Skerratt LF, Speare R (2005) Virulence of the amphibian chytrid fungus Batrachochytrium dendrobatidis varies with the strain. Dis Aquat Organ 68:47–50 Bosch J, Martínez-Solano I (2006) Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Peñalara Natural Park, Spain. Oryx 40:84–89. https://doi.org/10.1017/S0030605306000093 Brumpt E (1934a) Recherches expérimentales sur la biologie de la Lucilia bufonivora. Ann Parasitol Hum Comparée 12:81–97. https://doi.org/10.1051/parasite/1934122081 Brumpt E (1934b) Spécificité parasitaire et déterminisme de la ponte de la mouche Lucilia bufonivora. Comptes Rendus Hebd Des Séances L’académie Des Sci 198:124–126 Campião KM, De Aquino Ribas AC, Morais DH et al (2015) How many parasites species a frog might have? Determinants of parasite diversity in South American anurans. PLoS ONE 10:1–12. https://doi.org/10.1371/journal.pone.0140577 Carlson CJ, Hopkins S, Bell KC et al (2020) A global parasite conservation plan. Biol Conserv 250:108596. https://doi.org/10.1016/j.biocon.2020.108596 Carricondo-Sanchez D, Odden M, Linnell JDC, Odden J (2017) The range of the mange: spatiotemporal patterns of sarcoptic mange in red foxes (Vulpes vulpes) as revealed by camera trapping. PLoS ONE 12:1–16. https://doi.org/10.1371/journal.pone.0176200 Carrier JA, Beebee TJC (2003) Recent, substantial, and unexplained declines of the common toad Bufo bufo in lowland England. Biol Conserv 111:395–399. https://doi.org/10.1016/S0006-3207(02)00308-7 Castelao Tetila E, Brandoli Machado B, Belete NADS et al (2017) Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci Remote Sens Lett 14:2190–2194. https://doi.org/10.1109/LGRS.2017.2743715 Cizauskas CA, Carlson CJ, Burgio KR et al (2017) Parasite vulnerability to climate change: an evidence-based functional trait approach. R Soc Open Sci. https://doi.org/10.1098/rsos.160535 Collins JP (2010) Amphibian decline and extinction: what we know and what we need to learn. Dis Aquat Organ 92:93–99. https://doi.org/10.3354/dao02307 Crowl TA, Crist TO, Parmenter RR et al (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6:238–246. https://doi.org/10.1890/070151 Curtis-Robles R, Wozniak EJ, Auckland LD et al (2015) Combining public health education and disease ecology research: using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl Trop Dis 9:1–12. https://doi.org/10.1371/journal.pntd.0004235 de Jong, Y. et al. (2014) Fauna Europaea - all European animal species on the web. Biodiversity Data Journal 2: e4034. https://doi.org/10.3897/BDJ.2.e4034 De Mello-Patiu CA, De Luna-Dias C (2010) Myiasis in the neotropical amphibian Hypsiboas beckeri (Anura: Hylidae) by a new species of Lepidodexia (Diptera: Sarcophagidae). J Parasitol 96:685–688. https://doi.org/10.1645/GE-2423.1 de Souza-Pinto FC, França IF, de Mello-Patiu CA (2015) Brief description of myiasis cases in three amphibian species from Atlantic Forest located in the central region of the State of Minas Gerais, Brazil. Herpetol Notes 8:287–290 Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172. https://doi.org/10.1146/annurev-ecolsys-102209-144636 Doherty JF, Filion A, Bennett J et al (2021) The people vs science: can passively crowdsourced internet data shed light on host-parasite interactions? Parasitology 148:1313–1319. https://doi.org/10.1017/S0031182021000962 Dougherty ER, Carlson CJ, Bueno VM et al (2016) Paradigms for parasite conservation. Conserv Biol 30:724–733. https://doi.org/10.1111/cobi.12634 Eaton BR, Moenting AE, Paszkowski CA, Shpeley D (2008) Myiasis by Lucilia silvarum (Calliphoridae) in amphibian species in boreal Alberta, Canada. J Parasitol 94:949–952. https://doi.org/10.1645/GE-1373.1 Eisen L, Eisen RJ (2020) Benefits and drawbacks of citizen science to complement traditional data gathering approaches for medically important hard ticks (Acari: Ixodidae) in the United States. J Med Entomol. https://doi.org/10.1093/jme/tjaa165 Eizemberg R, Sabagh LT, Mello RDS (2008) First record of myiasis in Aplastodiscus arildae (Anura: Hylidae) by Notochaeta bufonivora (Diptera: Sarcophagidae) in the Neotropical area. Parasitol Res 102:329–331. https://doi.org/10.1007/s00436-007-0767-5 Feddern N, Amendt J, Schyma C et al (2018) A preliminary study about the spatiotemporal distribution of forensically important blow flies (Diptera: Calliphoridae) in the area of Bern, Switzerland. Forensic Sci Int 289:57–66. https://doi.org/10.1016/j.forsciint.2018.05.022 Fisher MC, Garner TWJ (2020) Chytrid fungi and global amphibian declines. Nat Rev Microbiol 18:332–343. https://doi.org/10.1038/s41579-020-0335-x Fremdt H, Szpila K, Huijbregts J et al (2012) Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae)-a new species of interest for forensic entomology in Europe. Forensic Sci Int 222:335–339. https://doi.org/10.1016/j.forsciint.2012.07.013 Garcia-Marti I, Zurita-Milla R, Harms MG, Swart A (2018) Using volunteered observations to map human exposure to ticks. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-33900-2 Gil Arriortua M, Martínez de Pancorbo M, Bordas MIS (2014) Presence of Lucilia bufonivora (Diptera, Calliphoridae) confirmed in the Basque Country (northern Spain). Boletín La Asoc Española Entomol 38:25–31 Glaw F, Morinìere J, Glaw K, Doczkal D (2014) Myiasis bei der Erdkröte (Bufo bufo) verursacht durch die Schmeißfliege Lucilia ampullacea. Z Feldherpetol 21:83–95 Haelewaters D, Pfliegler WP, Szentiványi T et al (2017) Parasites of parasites of bats: Laboulbeniales (Fungi: Ascomycota) on bat flies (Diptera: Nycteribiidae) in central Europe. Parasit Vectors 10:96 Hagman M, Pape T, Schulte R (2005) Flesh fly myiasis (Diptera, Sarcophagidae) in Peruvian poison frogs genus Epipedobates (Anura, Dendrobatidae). Phyllomedusa 4:69–73. https://doi.org/10.11606/issn.2316-9079.v4i1p69-73 Hanelt B, Schmidt-Rhaesa A, Bolek MG (2015) Cryptic species of hairworm parasites revealed by molecular data and crowdsourcing of specimen collections. Mol Phylogenet Evol 82:211–218. https://doi.org/10.1016/j.ympev.2014.09.010 Hawkins CE, Baars C, Hesterman H et al (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol Conserv 131:307–324. https://doi.org/10.1016/j.biocon.2006.04.010 Huijbregts H (2002) Nederlandse bromvliegen (Diptera: Calliphoridae). Entomol Ber 62:82–89 Hunt KE, Moore MJ, Rolland RM et al (2013) Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. Conserv Physiol 1:cot006–cot006. https://doi.org/10.1093/conphys/cot006 IUCN (2022) The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org. Accessed on 4 Mar 2022 Kaczorowska E (2006) Blowflies (Diptera : Calliphoridae) in the saline habitats of the Polish Baltic coast. Polish J Entomol 75:11–27 Karpa A (2008) Catalogue of Latvian flies (Diptera: Brachycera). Latv Entomol 46:4–43 Kraus F (2007) Fly parasitism in Papuan frogs, with a discussion of ecological factors influencing evolution of life-history differences. J Nat Hist 41:1863–1874. https://doi.org/10.1080/00222930701511875 Lada GA (2009) On amphibian parasite Lucilia bufonivora (Insecta, Diptera, Calliphoridae) in Tambov region. Curr Stud Herpetol 9:62–64 Lawson B, Petrovan SO, Cunningham AA (2015) Citizen science and wildlife disease surveillance. EcoHealth 12:693–702. https://doi.org/10.1007/s10393-015-1054-z Legett HD, Baranov VA, Bernal XE (2018) Seasonal variation in abundance and diversity of eavesdropping frog-biting midges (Diptera, Corethrellidae) in a neotropical rainforest. Ecol Entomol 43:226–233. https://doi.org/10.1111/een.12492 Lernout T, De Regge N, Tersago K et al (2019) Prevalence of pathogens in ticks collected from humans through citizen science in Belgium. Parasit Vectors 12:1–11. https://doi.org/10.1186/s13071-019-3806-z Lootvoet A, Blanchet S, Gevrey M et al (2013) Patterns and processes of alternative host use in a generalist parasite: insights from a natural host-parasite interaction. Funct Ecol 27:1403–1414. https://doi.org/10.1111/1365-2435.12140 Mendoza-Roldan J, Ribeiro SR, Castilho-Onofrio V et al (2020) Mites and ticks of reptiles and amphibians in Brazil. Acta Trop 208:105515. https://doi.org/10.1016/j.actatropica.2020.105515 Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1–10. https://doi.org/10.3389/fpls.2016.01419 Olson DH, Aanensen DM, Ronnenberg KL et al (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE. https://doi.org/10.1371/journal.pone.0056802 Palmer JRB, Oltra A, Collantes F et al (2017) Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat Commun 8:1–12. https://doi.org/10.1038/s41467-017-00914-9 Pape T, Beuk P, Pont AC et al (2015) Fauna Europaea: Diptera - Brachycera. Biodivers Data J 3:1–31. https://doi.org/10.3897/BDJ.3.e4187 Pernat N, Kampen H, Jeschke JM, Werner D (2020) Citizen science versus professional data collection: comparison of approaches to mosquito monitoring in Germany. J Appl Ecol. https://doi.org/10.1111/1365-2664.13767 Petrovan SO, Schmidt BR (2016) Volunteer conservation action data reveals large-scale and long-term negative population trends of a widespread amphibian, the common toad (Bufo bufo). PLoS ONE 11:1–12. https://doi.org/10.1371/journal.pone.0161943 Pohjoismäki J, Kahanpää J (2014) Checklist of the superfamilies oestroidea and hippoboscoidea of Finland (insecta, Diptera). Zookeys 408:383–408. https://doi.org/10.3897/zookeys.441.7252 Porter WT, Motyka PJ, Wachara J et al (2019) Citizen science informs human-tick exposure in the Northeastern United States. Int J Health Geogr 18:1–14. https://doi.org/10.1186/s12942-019-0173-0 Puechmaille SJ, Wibbelt G, Korn V et al (2011) Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS ONE. https://doi.org/10.1371/journal.pone.0019167 QGIS Development Team (2019) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org Richards OW (1926) Notes on the British species of Lucilia (Diptera). Trans R Entomol Soc London 255–260 Rognes K (1980) The blow-fly genus Lucilia Robineau-Desvoidy (Diptera, Calliphoridae) in Norway. Fauna Nor Nor J Entomol Ser B 39–52 Rózsa L, Vas Z (2015) Co-extinct and critically co-endangered species of parasitic lice, and conservation-induced extinction: should lice be reintroduced to their hosts? Oryx 49:107–110. https://doi.org/10.1017/S0030605313000628 Sándor AD, Mihalca AD, Domşa C et al (2021) Argasid ticks of Palearctic bats: distribution, host selection, and zoonotic importance. Front Vet Sci. https://doi.org/10.3389/fvets.2021.684737 Santos JC, Tarvin RD, O’Connell LA et al (2018) Diversity within diversity: parasite species richness in poison frogs assessed by transcriptomics. Mol Phylogenet Evol 125:40–50. https://doi.org/10.1016/j.ympev.2018.03.015 Sodhi NS, Bickford D, Diesmos AC et al (2008) Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE 3:1–8. https://doi.org/10.1371/journal.pone.0001636 Strijbosch H (1980) Mortality in a population of Bufo bufo resulting from the fly Lucilia bufonivora. Oecologia 45:285–286 Sulakova H, Rognes K, Bartak M, Kubik S (2013) Calliphoridae (Diptera) of Vráž nr. Písek (Czech Republic). Proc Workshop biodiversity, Jevany, 2–3.th July, 2013 381–388. https://doi.org/10.13140/2.1.3268.3203 Szentiványi T, Markotter W, Dietrich M et al (2020) Host conservation through their parasites: molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies. Parasite 27:1–10. https://doi.org/10.1051/parasite/2020069 Tantawi TI, Whitworth T (2014) First record of Lucilia bufonivora Moniez, 1876 (Diptera: Calliphoridae) from North America and key to North American species of the L. bufonivora species group. Zootaxa 3881:101–124. https://doi.org/10.11646/zootaxa.3881.2.1 RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ Tompkins DM, Clayton DH (1999) Host resources govern the specificity of swiftlet lice: size matters. J Anim Ecol 68:489–500. https://doi.org/10.1046/j.1365-2656.1999.00297.x Walther D, Kampen H (2017) The citizen science project “Mueckenatlas” helps monitor the distribution and spread of invasive mosquito species in Germany. J Med Entomol 54:1790–1794. https://doi.org/10.1093/jme/tjx166 Whitworth TL, Bolek MG, Arias-Robledo G (2021) Lucilia bufonivora, not Lucilia silvarum (Diptera: Calliphoridae), causes myiasis in anurans in North America with notes about Lucilia elongata and Lucilia thatuna. J Med Entomol 58:88–92. https://doi.org/10.1093/jme/tjaa143 Wickham H, Chang W (2016) Package “ggplot2.” Cham, Switz Wiesner-Hanks T, Wu H, Stewart E et al (2019) Millimeter-level plant disease detection from aerial photographs via deep learning and crowdsourced data. Front Plant Sci 10:1–11. https://doi.org/10.3389/fpls.2019.01550 Williams KA, Lamb J, Villet MH (2016) Phylogenetic radiation of the greenbottle flies. Zookeys 86:59–86. https://doi.org/10.3897/zookeys.568.6696 Zumpt F (1956) Calliphorinae. Die Fliegen der Palaearktischen Region. In: Lindner E (ed) Vol 11. Stuttgart, pp 1–140