Toxin-Antitoxin Systems as Phage Defense Elements

Annual Review of Microbiology - Tập 76 Số 1 - Trang 21-43 - 2022
Michele LeRoux1, Michael T. Laub1,2
1Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts (USA)
2Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Tóm tắt

Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacteria that consist of a growth-inhibiting toxin and its cognate antitoxin. These systems are prevalent in bacterial chromosomes, plasmids, and phage genomes, but individual systems are not highly conserved, even among closely related strains. The biological functions of TA systems have been controversial and enigmatic, although a handful of these systems have been shown to defend bacteria against their viral predators, bacteriophages. Additionally, their patterns of conservation—ubiquitous, but rapidly acquired and lost from genomes—as well as the co-occurrence of some TA systems with known phage defense elements are suggestive of a broader role in mediating phage defense. Here, we review the existing evidence for phage defense mediated by TA systems, highlighting how toxins are activated by phage infection and how toxins disrupt phage replication. We also discuss phage-encoded systems that counteract TA systems, underscoring the ongoing coevolutionary battle between bacteria and phage. We anticipate that TA systems will continue to emerge as central players in the innate immunity of bacteria against phage.

Từ khóa


Tài liệu tham khảo

10.1016/j.molcel.2013.10.014

10.1038/s41586-019-1735-9

10.1111/mmi.13225

10.1128/jvi.18.1.20-25.1976

10.1016/0022-2836(92)90629-X

10.1128/jb.173.18.5732-5739.1991

10.1128/AEM.03229-16

10.1371/journal.pgen.1003023

10.1038/nsmb.1981

10.1093/nar/gks231

Bobonis J, Mateus A, Pfalz B, Garcia-Santamarina S, Galardini M, et al. 2020. Bacterial retrons encode tripartite toxin/antitoxin systems. bioRxiv 2020.06.22.160168. https://doi.org/10.1101/2020.06.22.160168

Bobonis J, Mitosch K, Mateus A, Kritikos G, Elfenbein JR, et al. 2020. Phage proteins block and trigger retron toxin/antitoxin systems. bioRxiv 2020.06.22.160242. https://doi.org/10.1101/2020.06.22.160242

10.1016/0042-6822(71)90129-2

10.3389/fmicb.2017.01006

10.1016/j.molcel.2016.05.002

10.1016/S0022-2836(03)00922-7

10.1111/j.1365-2958.2009.06969.x

10.1016/j.molcel.2018.04.026

10.1038/nmicrobiol.2016.251

10.1038/s41579-019-0311-5

10.1371/journal.pbio.1000317

10.1093/nar/gkt1419

10.1128/AEM.64.12.4748-4756.1998

10.1073/pnas.0808832106

10.1128/JB.00763-19

10.1126/science.aba0372

10.1128/aem.61.12.4321-4328.1995

10.1002/j.1460-2075.1986.tb04459.x

10.1146/annurev-micro-092611-150159

10.1111/j.1365-2958.1990.tb02029.x

10.3390/toxins8100282

10.1128/mBio.00640-18

10.1016/j.molcel.2021.03.027

10.1038/s41586-019-1894-8

10.1128/AAC.00144-08

10.1016/j.molcel.2018.01.003

10.1128/mBio.01964-17

10.1016/j.celrep.2015.07.056

10.1007/s00438-004-1048-y

10.1128/JB.186.11.3663-3669.2004

10.1126/science.1244705

10.1371/journal.pgen.1007007

10.1074/jbc.273.1.518

10.1186/1743-422X-7-289

10.1016/j.molcel.2016.11.014

10.1046/j.1365-2958.2002.02921.x

10.1073/pnas.1916617117

10.1093/genetics/144.1.7

10.1038/ncomms4001

10.1534/genetics.110.121798

10.1128/JB.188.9.3420-3423.2006

10.1046/j.1365-2958.2003.03779.x

10.1128/mr.47.3.345-360.1983

10.1016/j.molcel.2021.06.005

10.1016/0092-8674(89)90592-8

10.1016/j.celrep.2020.01.014

10.1093/nar/gkr131

10.1016/j.molcel.2020.05.028

LeRoux M, Srikant S, Littlehale ML, Teodoro G, Doron S, et al. 2021. The DarTG toxin-antitoxin system provides phage defense by ADP-ribosylating viral DNA. bioRxiv 2021.09.27.462013. https://doi.org/10.1101/2021.09.27.462013

10.1016/j.chom.2020.12.007

10.1111/1751-7915.13570

Lin L. 1992. Study of bacteriophage T7 gene 5.9 and gene 5.5. Ph.D. Thesis. State University of New York at Stony Brook. 172 pp.

10.1073/pnas.0711949105

10.1128/JB.00958-07

10.1093/nar/gky124

10.1016/j.cell.2014.02.050

10.1186/1745-6150-4-19

10.1093/nar/gkt157

10.1016/0022-2836(92)91024-J

10.1016/j.cell.2020.09.065

10.1038/s41564-020-0777-y

10.1128/jb.155.2.768-775.1983

10.3390/toxins8070214

10.1371/journal.pbio.1001033

10.1111/mmi.12479

10.1128/mBio.00340-19

10.1073/pnas.80.15.4784

10.1128/JB.185.3.983-990.2003

10.1534/genetics.104.033290

10.1111/j.1365-2958.2012.07975.x

10.1128/jvi.16.5.1200-1207.1975

10.1038/nchembio.2044

10.1093/nar/gki201

10.1128/jb.178.7.2044-2050.1996

10.1073/pnas.1814633116

PNAS, 2018, PNAS, 115, E2901

10.1371/journal.pgen.1000767

10.1016/j.jmb.2019.03.019

10.1073/pnas.70.8.2215

10.3390/toxins6031002

10.1128/JB.00296-13

10.1038/nrmicro3096

10.1111/mmi.12129

10.1016/j.molcel.2013.02.002

10.1093/nar/gkv1370

10.1038/s41586-021-03825-4

10.1093/nar/gkq908

10.1038/s41598-017-18696-x

10.1073/pnas.1216039110

10.1093/nar/gkz865

10.1073/pnas.73.9.3098

10.3389/fmicb.2020.01895

10.1128/jb.171.5.2353-2360.1989

10.1111/j.1365-2958.2010.07433.x

10.1128/JB.00527-07

10.1111/j.1365-2958.1994.tb00391.x

10.1371/journal.pgen.1000437

10.3389/fmicb.2017.00191

10.1111/mmi.13420

10.1038/nchembio.1062

10.1128/AEM.05068-11

10.1016/j.bbrc.2016.03.025

10.1073/pnas.1019587108

10.1093/nar/gkx1033

10.1146/annurev-genet-110410-132412

10.1111/mmi.14571

10.1016/S1097-2765(03)00402-7