Toxicological evaluation of the dried hydroethanolic extract of Amaranthus spinosus L. roots in Artemia salina larvae and Sprague Dawley rats

Springer Science and Business Media LLC - Tập 7 - Trang 1-9 - 2021
Kokou Atchou1, Povi Lawson-Evi1, Aboudoulatif Diallo1, Kwashie Eklu-Gadegbeku2
1Research Unit in Physiopathology, Bioactive Substances and Safety, Faculty of Sciences, University of Lome, Lome, Togo
2Department of Toxicology, Faculty of Health Sciences, University of Lome, Lome, Togo

Tóm tắt

Amaranthus spinosus is a medicinal plant used in traditional medicine to treat several diseases including diabetes and its complications. The aim of this study was to prove the safety of the plant in animal health. The dry extract was obtained following the hydroethanolic extraction of A. spinosus roots. The cytotoxicity was evaluated in vitro by incubating Artemia salina larvae with the extract for 24 h. In vivo toxicity was assessed in Sprague Dawley rats. A single dose of 5000 mg/kg bw of extract was administered orally to female rats in acute toxicity and observed for 14 days for mortality and signs of toxicity. In subchronic toxicity, extract doses of 500 and 1000 mg/kg bw were administered orally to male and female rats for 28 consecutive days and observed for previous signs. Body weight was recorded daily and blood glucose levels every week. On day 29, blood was collected for biochemical and hematological studies. Organs were then exised for gross autopsy and histopathological examination. The in vitro study showed that the extract had a LC50 = 1.178 mg/mL in larvae and was considered to be non-cytotoxic. Oral administration of extract at a single dose of 5000 mg/kg bw did not cause any mortality or sign of toxicity in gross necropsy. In subchronic oral toxicity, repeated doses of 500 and 1000 mg/kg bw of extract, did not also cause any mortality or significant change in body weight, relative weight of vital organs. Furthermore, hematological and biochemical parameters and histopathological examination did not show any significant change. The observed decrease in blood glucose levels did not correlate with organ damage and supports the safety of the plant. However, the reduction of LDL-cholesterol has shown that the extract can prevent cardiovascular disease. This finding demonstrated that A. spinosus root is non-toxic with a LD50 > 5000 mg/kg bw. Thus, the extract can be used for cutaneous and subchronic oral administration at doses ≤ 1000 mg/kg bw. However, further studies such as embryo/fetotoxicity, genotoxicity and neurotoxicity will be needed to prove the safety of chronic administration of the extract in patients and fetuses.

Tài liệu tham khảo

Iamonico D. Taxonomic revision of the genus Amaranthus (Amaranthaceae) in Italy. Phytotaxa. 2015;199:1–84. Kumar BSA, Lakshman K, Jayaveera KN, Shekar DS, Kumar AA, Manoj B. Antioxidant and antipyretic properties of methanolic extract of Amaranthus spinosus leaves. Asian Pac J Trop Med. 2010;3:702–6. Atchou K, Lawson-Evi P, Metowogo K, Eklu-Gadegbeku K, Aklikokou K, Gbeassor M. Hypoglycemic effect and antioxidant potential of Pterocarpus erinaceus Poir. stem bark and Amaranthus spinosus L. roots extracts. J Pharm Sci Res. 2020;12:340–50. Mondal A, Guria T, Maity TK, Bishayee A. A novel tetraenoic fatty acid isolated from Amaranthus spinosus inhibits proliferation and induces apoptosis of human liver cancer cells. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17101604. Amabye TG. Evaluation of physiochemical, phytochemical, antioxidant and antimicrobial screening parameters of Amaranthus spinosus leaves. Nat Prod Chem. 2015;4:1–5. Hilou A, Nacoulma OG, Guiguemde TR. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J Ethnopharmacol. 2006;103:236–40. Kumar BSA, Lakshman K, Jayaveera KN. Comparative antipyretic activity of methanolic extracts of some species of Amaranthus. Asian Pac J Trop Biomed. 2011;1:47–50. Zeashan H, Amresh G, Rao CV, Singh S. Antinociceptive activity of Amaranthus spinosus in experimental animals. J Ethnopharmacol. 2009;122:492–6. Olajide OA, Ogunleye BR, Erinle TO. Anti-inflammatory properties of Amaranthus spinosus leaf extract. Pharm Biol. 2004;42:521–5. Sarker U, Oba S. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-50977-5. Ashok Kumar BS, Lakshman K, Nandeesh R, et al. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats. Saudi J Biol Sci. 2011;18:1–5. Zeashan H, Amresh G, Singh S, Rao CV. Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food Chem Toxicol. 2008;46:3417–21. Chaudhary MA, Imran I, Bashir S, Mehmood MH, Rehman NU, Gilani AH. Evaluation of gut modulatory and bronchodilator activities of Amaranthus spinosus Linn. BMC Complement Altern Med. 2012. https://doi.org/10.1186/1472-6882-12-166. Abid M, Gosh AK, Khan NA. In vivo psychopharmacological investigation of Delphinium denudatum and Amaranthus spinosus extracts on Wistar rats. Basic Clin Neurosci. 2017;8:503–12. Bhande SS, Wasu YH. Effect of aqueous extract of Amaranthus spinosus on biochemical parameters of Wistar albino rats. Life sci leafl. 2016;75:1–9. Bhande SS, Wasu YH. Effect of aqueous extract of Amaranthus spinosus on hematological parameters of Wistar albino rats. J Exp Biol Agric Sci. 2016;4:116–20. Houmènou V, Adjatin A, Assogba F, Gbénou J, Akoègninou A. Etude phytochimique et de cytotoxicité de quelques plantes utilisées dans le traitement de la stérilité féminine au Sud-Benin. Eur Sci J. 2018;14:156–71. Mousseux M. Test de toxicité sur larves d’Artemia salina: entretien d’un élevage de balanes. Tech. Rep., DEUST Aquaculture, Noumea, France: Centre Universitaire de Nouvelle-Calédonie; 1995. OECD (Organization of Economic Co-operation and Development). Test No. 423: Acute oral toxicity - Acute toxic class method, OECD guidelines for the testing of chemicals, Sec. 4. Paris: OECD publishing; 2002. Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA, Myers RC. Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures. Food Chem Toxicol. 1995;33:223–31. OECD (Organization of Economic Co-operation and Development). Test No. 407: Repeated dose 28-day oral toxicity study in rodents, OECD guidelines for the testing of chemicals, Sec. 4. Paris: OECD publishing; 2008. Atchou K, Lawson-Evi P, Eklu-Gadegbeku K. In vitro study of protective effect of Pterocarpus erinaceus Poir. stem bark and Amaranthus spinosus L. root extracts on cataractogenesis and glomerulopathy. Bull Natl Res Cent. 2021;45:1–9. Khanal DP, Raut B, Dangol KS. Phytochemical screening, pharmacognostic evaluation and biological activity of Amaranthus spinosus L. JMMIHS. 2015;1:29–34. Octaviani CD, Lusiana M, Zuhrotun A, Diantini A, Subarnas A, Abdulah R. Anticancer properties of daily-consumed vegetables Amaranthus spinosus, Ipomoea aquatica, Apium graveolens, and Manihot utilisima to LNCaP prostate cancer cell lines. J Nat Pharmaceut. 2013;4:67–70. Sangameswaran B, Ramdas P. Antihyperglycemic and antihyperlipidaemic activities of Amaranthus spinosus Linn extract on alloxan induced diabetic rats. Malays J Pharm Sci. 2010;8:13–22. Girija K, Lakshman K, Udaya C, Sachi GS, Divya T. Anti–diabetic and anti–cholesterolemic activity of methanol extracts of three species of Amaranthus. Asian Pac J Trop Biomed. 2011;1:133–38. Akinloye OA, Olorede BR. Effect of Amaranthus spinosus leaf extract on haematology and serum chemistry of rats. Niger J Nat Prod Med. 2000;4:79–81.