Towards real-time, tracker-less 3D ultrasound guidance for spine anaesthesia

Springer Science and Business Media LLC - Tập 10 - Trang 855-865 - 2015
Mikael Brudfors1, Alexander Seitel2, Abtin Rasoulian2, Andras Lasso3, Victoria A. Lessoway4, Jill Osborn5, Atsuto Maki1, Robert N. Rohling2,6, Purang Abolmaesumi2
1School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
2Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
3Laboratory for Percutaneous Surgery, School of Computing, Queens University, Kingston, Canada
4Department of Ultrasound, Women’s Hospital, Vancouver, Canada
5Department of Anesthesia, St. Pauls Hospital, Vancouver, Canada
6Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada

Tóm tắt

Epidural needle insertions and facet joint injections play an important role in spine anaesthesia. The main challenge of safe needle insertion is the deep location of the target, resulting in a narrow and small insertion channel close to sensitive anatomy. Recent approaches utilizing ultrasound (US) as a low-cost and widely available guiding modality are promising but have yet to become routinely used in clinical practice due to the difficulty in interpreting US images, their limited view of the internal anatomy of the spine, and/or inclusion of cost-intensive tracking hardware which impacts the clinical workflow. We propose a novel guidance system for spine anaesthesia. An efficient implementation allows us to continuously align and overlay a statistical model of the lumbar spine on the live 3D US stream without making use of additional tracking hardware. The system is evaluated in vivo on 12 volunteers. The in vivo study showed that the anatomical features of the epidural space and the facet joints could be continuously located, at a volume rate of 0.5 Hz, within an accuracy of 3 and 7 mm, respectively. A novel guidance system for spine anaesthesia has been presented which augments a live 3D US stream with detailed anatomical information of the spine. Results from an in vivo study indicate that the proposed system has potential for assisting the physician in quickly finding the target structure and planning a safe insertion trajectory in the spine.

Tài liệu tham khảo

Abdi S, Datta S, Lucas LF (2005) Role of epidural steroids in the management of chronic spinal pain: a systematic review of effectiveness and complications. Pain Physician 8(1):127–143 Boswell MV, Colson JD, Sehgal N, Dunbar EE, Epter R (2007) A systematic review of therapeutic facet joint interventions in chronic spinal pain. Pain Physician 10(1):229–253 Carvalho JCA (2008) Ultrasound-facilitated epidurals and spinals in obstetrics. Anesthesiol Clin 26(1):145–58 Chen ECS, Mousavi P, Gill S, Fichtinger G, Abolmaesumi P (2010) Ultrasound guided spine needle insertion. In: Proceedings of the SPIE, vol 7625, pp 762538-1–762538-8 Chen TK, Thurston AD, Ellis RE, Abolmaesumi P (2009) A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med Biol 35(1):79–93 Conroy PH, Luyet C, McCartney CJ, McHardy PG (2013) Real-time ultrasound-guided spinal anaesthesia: a prospective observational study of a new approach. Anesthesiol Res Pract 2013:525,818–525,824 de Oliveira Filho GR (2002) The construction of learning curves for basic skills in anesthetic procedures: an application for the cumulative sum method. Anesth Analg 95(2):411–416 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341 Foroughi P, Boctor E, Swartz M, Taylor R, Fichtinger G (2007) Ultrasound bone segmentation using dynamic programming. IEEE Ultrason Symp 13(4):2523–2526 Greher M, Scharbert G, Kamolz LP, Beck H, Gustorff B, Kirchmair L, Kapral S (2004) Ultrasound-guided lumbar facet nerve block: a sonoanatomic study of a new methodologic approach. Anesthesiology 100(5):1242–1248 Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2014) Volume-specific parameter optimization of 3D local phase features for improved extraction of bone surfaces in ultrasound. Int J Med Robot Comput Assist Surg. URL: http://dx.doi.org/10.1002/rcs.1552. Published online Karamalis A, Wein W, Klein T, Navab N (2012) Ultrasound confidence maps using random walks. Med Image Anal 16(6):1101–1112 Kerby B, Rohling R, Nair V, Abolmaesumi P (2008) Automatic identification of lumbar level with ultrasound. Conf Proc IEEE Eng Med Biol Soc 2008:2980–2983 Khallaghi S, Mousavi P, Gong RH, Gill S, Boisvert J, Fichtinger G, Pichora D, Borschneck D, Abolmaesumi P (2010) Registration of a statistical shape model of the lumbar spine to 3D ultrasound images. In: MICCAI 2010, Part II, vol LNCS 6362, pp 68–75 Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537 Liu SS, Strodtbeck WM, Richman JM, Wu CL (2005) A comparison of regional versus general anesthesia for ambulatory anesthesia: a meta-analysis of randomized controlled trials. Anesth Analg 101(6):1634–1642 Loizides A, Peer S, Plaikner M, Spiss V, Galiano K, Obernauer J, Gruber H (2011) Ultrasound-guided injections in the lumbar spine. Med Ultrason 13(1):54–58 Malenfant PA, Gunka V, Beigi P, Rasoulian A, Rohling R, Dube A (2014) Accuracy of 3d ultrasound for identification of epidural needle skin insertion point in parturients; a prospective observational study. In: Society for obstetric anesthesia and perinatology (SOAP) 46th annual meeting. Toronto, ON, Canada, p 308 Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, Peters T (2009) Image guidance for spinal facet injections using tracked ultrasound. In: MICCAI 2009, part I, vol LNCS 5761, pp 516–523 Narouze S, Peng PWH (2010) Ultrasound-guided interventional procedures in pain medicine: a review of anatomy, sonoanatomy, and procedures. Part II: axial structures. Reg Anesth Pain Med 35(4):386–396 Niazi AU, Chin KJ, Jin R, Chan VW (2014) Real-time ultrasound-guided spinal anesthesia using the SonixGPS ultrasound guidance system: a feasibility study. Acta Anaesth Scand 58(7):875–881 Nickalls RW, Kokri MS (1986) The width of the posterior epidural space in obstetric patients. Anaesthesia 41(4):432–433 Osterman MJ, Martin JA (2011) Epidural and spinal anesthesia use during labor: 27-state reporting area, 2008. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. Natl Vital Stat Syst 59(5):1–13 Parr AT, Diwan S, Abdi S (2009) Lumbar interlaminar epidural injections in managing chronic low back and lower extremity pain: a systematic review. Pain Physician 12(1):163–188 Pesteie M, Abolmaesumi P, Ashab HAD, Lessoway VA, Massey S, Gunka V, Rohling R (2014) Automatic recognition of the target plane in 3D ultrasound with EpiGuide. In: 7th NCIGT and NIH image guided therapy workshop. Boston, MA, USA Rahmatullah B, Papageorghiou AT, Noble JA (2012) Integration of local and global features for anatomical object detection in ultrasound. In: MICCAI 2012, Part III, vol LNCS 7512, pp 402–409 Rasoulian A, Rohling R, Abolmaesumi P (2013) Augmentation of paramedian 3D ultrasound images of the spine. In: IPCAI 2013, vol LNCS 7915, pp 51–60 Rubin DI (2007) Epidemiology and risk factors for spine pain. Neurol Clin 25(2):353–371 Shaikh F, Brzezinski J, Alexander S, Arzola C, Carvalho JCA, Beyene J, Sung L (2013) Ultrasound imaging for lumbar punctures and epidural catheterisations: systematic review and meta-analysis. The BMJ 346:1720–1731 Sprigge JS, Harper SJ (2008) Accidental dural puncture and post dural puncture headache in obstetric anaesthesia: presentation and management: a 23-year survey in a district general hospital. Anaesthesia 63(1):36–43 Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Med Robot 5(4):423–434 Tran D, Kamani AA, Al-Attas E, Lessoway VA, Massey S, Rohling RN (2010) Single-operator real-time ultrasound-guidance to aim and insert a lumbar epidural needle. Can J Anaesth 57(4):313–321 Ungi T, Abolmaesumi P, Jalal R, Welch M, Ayukawa I, Nagpal S, Lasso A, Jaeger M, Borschneck DP, Fichtinger G, Mousavi P (2012) Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans Biomed Eng 59(10):2766–2772 Yoon S, OBrien S, Tran M (2013) Ultrasound guided spine injections: advancement over fluoroscopic guidance? Curr Phys Med Rehabil Rep 1(2):104–113 Yu S, Tan KK, Sng BL, Li S, Sia ATH (2014) Automatic identification of needle insertion site in epidural anesthesia with a cascading classifier. Ultrasound Med Biol 40(9):1980–1990