Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system

Philosophical Transactions of the Royal Society B: Biological Sciences - Tập 362 Số 1485 - Trang 1601-1613 - 2007
Thomas E. Hazy1, Michael J. Frank2, Randall C. O’Reilly1
1Department of Psychology, University of Colorado Boulder345 UCB, Boulder, CO 80309, USA
2Department of Psychology, Program in Neuroscience, University of ArizonaTucson, AZ 85721, USA

Tóm tắt

The prefrontal cortex (PFC) has long been thought to serve as an ‘executive’ that controls the selection of actions and cognitive functions more generally. However, the mechanistic basis of this executive function has not been clearly specified often amounting to a homunculus. This paper reviews recent attempts to deconstruct this homunculus by elucidating the precise computational and neural mechanisms underlying the executive functions of the PFC. The overall approach builds upon existing mechanistic models of the basal ganglia (BG) and frontal systems known to play a critical role in motor control and action selection, where the BG provide a ‘Go’ versus ‘NoGo’ modulation of frontal action representations. In our model, the BG modulate working memory representations in prefrontal areas to support more abstract executive functions. We have developed a computational model of this system that is capable of developing human-like performance on working memory and executive control tasks through trial-and-error learning. This learning is based on reinforcement learning mechanisms associated with the midbrain dopaminergic system and its activation via the BG and amygdala. Finally, we briefly describe various empirical tests of this framework.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.ne.09.030186.002041

10.1146/annurev.neuro.28.061604.135709

Baddeley A.D. 1986 Working memory. New York NY:Oxford University Press.

10.1162/089892998563815

10.3758/BF03206554

Braver T.S, 2000, Control of cognitive processes: attention and performance XVIII, 713

Braver T.S, 1995, Advances in neural information processing systems, 141

10.1006/nimg.1996.0247

10.1016/S0006-3223(99)00116-X

Braver T. S. Barch D. M. & Cohen J. D. Submitted. Mechanisms of cognitive control: active memory inhibition and the prefrontal cortex.

10.1523/JNEUROSCI.19-23-10502.1999

10.1016/j.neunet.2003.08.006

10.1037/0033-295X.106.3.551

10.1098/rstb.2007.2054

10.1037/0033-295X.99.1.45

10.1037/0033-295X.97.3.332

10.2307/1423029

10.1098/rstb.1996.0138

10.1038/386604a0

10.1023/A:1008862904946

10.1016/j.tics.2003.10.005

10.1162/jocn.1995.7.3.311

10.1038/35097575

10.1523/JNEUROSCI.19-07-02807.1999

10.1152/jn.2000.83.3.1733

10.1038/1086

10.1523/JNEUROSCI.13-08-03222.1993

10.1162/0898929052880093

10.1016/j.neunet.2006.03.006

10.1037/0033-295X.113.2.300

10.1037/0735-7044.120.3.497

10.3758/CABN.1.2.137

10.1126/science.1102941

10.1098/rstb.2007.2058

10.1038/sj.npp.1301278

10.1152/jn.1989.61.2.331

Fuster J.M. 1989 The prefrontal cortex: anatomy physiology and neuropsychology of the frontal lobe. New York NY:Raven Press.

10.1126/science.173.3997.652

Graybiel A.M, 1995, Models of information processing in the basal ganglia, 103

10.1007/PL00007984

10.1016/j.neuroscience.2005.04.067

10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5

10.1093/cercor/5.2.95

Houk J.C, 1995, Models of information processing in the basal ganglia, 233

10.1098/rstb.2007.2063

10.1016/S0959-4388(96)80037-7

10.1016/S0893-6080(02)00047-3

10.1152/jn.1971.34.3.337

10.1002/cne.903380304

10.1146/annurev.neuro.27.070203.144247

10.1006/brcg.1999.1099

10.1146/annurev.neuro.24.1.167

10.1523/JNEUROSCI.16-16-05154.1996

10.1016/S0301-0082(96)00042-1

10.1038/331068a0

10.1523/JNEUROSCI.16-05-01936.1996

Munakata Y, 2003, Developmental and computational neuroscience approaches to cognition: the case of generalization, Cogn. Stud, 10, 76

Newell A. 1990 Unified theories of cognition. Cambridge MA:Harvard University Press.

10.1162/neco.1996.8.5.895

10.1162/089976606775093909

O'Reilly R.C& Munakata Y. 2000 Computational explorations in cognitive neuroscience: understanding the mind by simulating the brain. Cambridge MA:MIT Press.

10.1017/CBO9781139174909.014

10.1093/cercor/12.3.246

10.1037/0735-7044.121.1.31

10.1016/j.neunet.2005.06.049

10.1002/(SICI)1096-9861(19961223)376:4<614::AID-CNE9>3.0.CO;2-4

Rescorla R.A, 1972, Classical conditioning II: theory and research, 64

10.1207/s15516709cog2604_4

10.1073/pnas.0502455102

10.1152/jn.1998.80.1.1

10.1523/JNEUROSCI.13-03-00900.1993

Schultz W, 1995, Models of information processing in the basal ganglia, 233

10.1016/j.pneurobio.2004.05.006

Shallice T. 1988 From neuropsychology to mental structure. New York NY:Cambridge University Press.

10.1098/rstb.2007.2060

10.1126/science.153.3736.652

10.1016/S0306-4522(00)00554-6

10.1007/BF00115009

Sutton R.S& Barto A.G. 1998 Reinforcement learning: an introduction. Cambridge MA:MIT Press.

10.1016/S0893-6080(02)00050-3

10.1523/JNEUROSCI.19-21-09587.1999

Wickens J. 1993 A theory of the striatum. Oxford UK:Pergamon Press.

10.1002/syn.890200402

Widrow B. & Hoff M. E. 1960 Adaptive switching circuits. Inst. Radio Eng. West. Electron. Show Convention Convention Rec. Part 4 pp. 96–104.

10.1038/nrn1033

10.1037/0033-295X.111.4.931

10.1162/neco.1991.3.2.179