Towards a Theory of When and How Problem Solving Followed by Instruction Supports Learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acuña, S. R., García-Rodicio, H., & Sánchez, E. (2010). Fostering active processing of instructional explanations of learners with high and low prior knowledge. European Journal of Psychology of Education, 26(4), 435–452.
Anderson, J. (1983). The architecture of cognition. Cambridge: Harvard University Press.
*Belenky, D. M., & Nokes-Malach, T. J. (2012). Motivation and transfer: the role of mastery-approach goals in preparation for future learning. Journal of the Learning Sciences, 21(3), 399-432.
Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.
Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems to improve student learning in algebra: differentiating between correct and incorrect examples. Learning and Instruction, 25, 24–34.
Chi, M. T. H. (2000). Self-explaining expository texts: the dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology (pp. 161–238). Hillsdale: Lawrence Erlbaum Associates.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152.
Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: a theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43.
DeCaro, D. A., DeCaro, M. S., & Rittle-Johnson, B. (2015). Achievement motivation and knowledge development during exploratory learning. Learning and Individual Differences, 37, 13–26.
*DeCaro, M. S., & Rittle-Johnson, B. (2012). Exploring mathematics problems prepares children to learn from instruction. Journal of Experimental Child Psychology, 113, 552-568
diSessa, A. A., Hammer, D., Sherin, B. L., & Kolpakowski, T. (1991). Inventing graphing: meta-representational expertise in children. The Journal of Mathematical Behavior, 10(2), 117–160.
Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22(3), 206–214.
Eva, K. W., & Regehr, G. (2011). Exploring the divergence between self-assessment and self-monitoring. Advances in Health Sciences Education, 16(3), 311–329.
*Fyfe, E. R., DeCaro, M. S. & Rittle-Johnson, B. (2014). An alternative time for telling: when conceptual instruction prior to problem solving improves mathematical knowledge. British Journal of Educational Psychology, 84(3), 502-519.
*Glogger-Frey, I., Fleischer, C., Grüny, L., Kappich, J., & Renkl, A. (2015). Inventing a solution and studying a worked solution prepare differently for learning from direct instruction. Learning and Instruction, 39, 72-87.
Heckler, A. F., Kaminski, J. A., & Sloutsky, V. M. (2008). Learning associations that run counter to biases in learning: overcoming overshadowing and learned inattention. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pp. 511-516). Austin, TX: Cognitive Science Society
Holmes, N. G., Day, J., Park, A. H., Bonn, D. A., & Roll, I. (2014). Making the failure more productive: scaffolding the invention process to improve inquiry behaviours and outcomes in productive failure activities. Instructional Science, 42(4), 523–538.
*Hsu, C.-Y., Kalyuga, S. & Sweller, J. (2015). When should guidance be presented in physics instruction? Archives of Scientific Psychology, 3(1), 37-53.
Kalyuga, S., & Singh, A.-M. (2015). Rethinking the boundaries of cognitive load theory in complex learning. Educational Psychology Review. Advance Online Publication. doi: 10.1007/s10648-015-9352-0 .
*Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523-550.
*Kapur, M. (2011). A further study of productive failure in mathematical problem solving: unpacking the design components. Instructional Science, 39(4), 561-579.
*Kapur, M. (2012). Productive failure in learning the concept of variance. Instructional Science, 40(4), 651-672.
Kapur, M. (2014). Comparing learning from productive failure and vicarious failure. Journal of the Learning Sciences, 23(4), 651–677.
Kapur, M. (2016). Examining productive failure, productive success, unproductive failure, and unproductive success in learning. Educational Psychologist, 51(2), 289–299.
*Kapur, M., & Bielaczyc, K. (2011). Classroom-based experiments in productive failure. In L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2812–2817). Austin, TX: Cognitive Science Society.
*Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. The Journal of the Learning Sciences, 21(1), 45-83.
Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction (KLI) framework: bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36, 757–798.
Leppink, J., Paas, F., Van Gog, T., Van der Vleuten, C., & Van Merrienboer, J. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32–42.
Linn, M. C. (1995). Designing computer learning environments for engineering and computer science: the scaffolded knowledge integration framework. Journal of Science Education and Technology, 4, 103–126.
*Loehr, A. M., Fyfe, E. R., & Rittle-Johnson, B. (2014). Wait for it … delaying instruction improves mathematics problem solving: a classroom study. Journal of Problem Solving, 7(1), 36-49.
*Loibl, K. & Rummel, N. (2014a). Knowing what you don’t know makes failure productive. Learning and Instruction, 34, 74-85.
*Loibl, K., & Rummel, N. (2014b). The impact of guidance during problem-solving prior to instruction on students’ inventions and learning outcomes. Instructional Science, 42(3), 305-326.
*Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: is it all in the timing? Instructional Science, 41(3), 621-634.
Mazziotti, C., Loibl, K., & Rummel, N. (2014). Does collaboration affect learning in a productive failure setting? In: J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A. S. Ju-row, K. O’Connor, T. Lee, T., & L. D’Amico, Proceedings of the 11th international conference of the learning sciences (ICLS 2014), Vol. 3 (pp. 1184-1185). International Society of the Learning Sciences, Inc.
Mazziotti, C., Loibl, K., & Rummel, N. (2015). Collaborative or individual learning within productive failure. Does the social form of learning make a difference? In O. Lindwall, P. Häkkinen, T. Koschman, P. Tchounikine, & S. Ludvigsen (Eds.), Exploring the material conditions of learning: the Computer Supported Collaborative Learning (CSCL) Conference 2015 (Vol. 2, pp. 570–575). Gothenburg: ISLS.
Nathan, M. J. (1998). Knowledge and situational feedback in a learning environment for algebra story problem solving. Interactive Learning Environments, 5(1), 135–159.
Nathan, M. J., Alibali, M. W., Masarik, D. K., Stephens, A. C., & Koedinger, K. R. (2010). Enhancing middle school students’ representational fluency: a classroom-based study. WCER Working Paper Series no, 2010-9. Wisconsin Center for Educational Research: Madison, WI. Retrieved June 28, 2013, from http://www.wcer.wisc.edu/Publications/workingPapers/Working_Paper_No_2010_09.pdf .
Needham, D. R., & Begg, I. M. (1991). Problem-oriented training promotes spontaneous analogical transfer: memory-oriented training promotes memory for training. Memory & Cognition, 19(6), 543–57.
Paul, A. M. (2012) Why floundering is good. Time Magazine. Retrieved June 28, 2013, from http://ideas.time.com/2012/04/25/why-floundering-is-good/ .
Prediger, S. (2008). The relevance of didactic categories for analysing obstacles in conceptual change: revisiting the case of multiplication of fractions. Learning and Instruction, 18(1), 3–17.
Quilici, J. L., & Mayer, R. E. (1996). Role of examples in how students learn to categorize statistics word problems. Journal of Educational Psychology, 88(1), 144–161.
Quilici, J. L., & Mayer, R. E. (2002). Teaching students to recognize structural similarities between statistics word problems. Applied Cognitive Psychology, 16(3), 325–342.
Reisslein, J., Atkinson, R., Seeling, P., & Reisslein, M. (2006). Encountering the expertise reversal effect with a computer-based environment on electrical circuit analysis. Learning and Instruction, 16, 92–103.
Renkl, A. (2005). The worked-out-example principle in multimedia learning. In R. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 229–246). Cambridge: Cambridge University Press.
Renkl, A. (2014). Towards an instructionally-oriented theory of example-based learning. Cognitive Science, 38, 1–37.
Rittle-Johnson, B., & Schneider, M. (2014). Developing conceptual and procedural knowledge of mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition. Oxford: Oxford University Press.
Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101(3), 529–544.
*Roll, I., Aleven, V., & Koedinger, K. R. (2009). Helping students know ‘further’—increasing the flexibility of students’ knowledge using symbolic invention tasks. In N.A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 1169-1174). Austin: Cognitive Science Society.
*Roll, I., Aleven, V., & Koedinger, K. R. (2011). Outcomes and mechanisms of transfer. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2824–2829). Austin: Cognitive Science Society.
Roll, I., Holmes, N. G., Day, J., & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention activities. Instructional Science, 40(4), 691–710.
Roll, I., Wiese, E., Long, Y., Aleven, V., & Koedinger, K. R. (2014). Tutoring self- and co-regulation with intelligent tutoring systems to help students acquire better learning skills. In R. Sottilare, A. Graesser, X. Hu, & B. Goldberg (Eds.), Design recommendations for adaptive intelligent tutoring systems: volume 2—adaptive instructional strategies (pp. 169–182). Orlando: U.S. Army Research Laboratory.
Sánchez, E., García Rodicio, H., & Acuña, S. R. (2009). Are instructional explanations more effective in the context of an impasse? Instructional Science, 37(6), 537–563.
Schmidt, H. G., De Volder, M. L., De Grave, W. S., Moust, J. H. C., & Patel, V. L. (1989). Exploratory models in the processing of science texts: the role of prior knowledge activation through small-group discussion. Journal of Educational Psychology, 81(4), 610–619.
*Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4), 475–522.
*Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: the effects of telling first on learning and transfer. Journal of Educational Psychology, 103(4), 759–775.
*Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: the hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184.
Schwartz, D. L., Sears, D., & Chang, J. (2007). Reconsidering prior knowledge. In M. C. Lovett & P. Shah (Eds.), Thinking with data (pp. 319–344). New York: Routledge.
Sears, D. A. (2006). Effects of innovation versus efficiency tasks on collaboration and learning. Doctoral dissertation, Stanford University, California. Retrieved November 07, 2012, from http://www.stat.auckland.ac.nz/~iase/publications/dissertations/06.Sears.Dissertation.pdf .
Siegler, R. S. (1983). How knowledge influences learning. American Scientist, 71, 631–638.
Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12(2), 257–285.
Sweller, J., van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.
Toth, E. E., Klahr, D., & Chen, Z. (2000). Bridging research and practice: a cognitively-based classroom intervention for teaching experimentation skills to elementary school children. Cognition and Instruction, 18(4), 423–459.
Van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem example pairs on novices’ learning. Contemporary Educational Psychology, 36, 212–218.
Van Gog, T., & Rummel, N. (2010). Example-based learning: integrating cognitive and social-cognitive research perspectives. Educational Psychology Review, 22(2), 155–174.
VanLehn, K. (1999). Rule learning events in the acquisition of a complex skill: an evaluation of cascade. The Journal of the Learning Sciences, 8(1), 71–125.
VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (2003). Why do only some events cause learning during human tutoring? Cognition and Instruction, 21(3), 209–249.
Vosniadou, S., & Verschaffel, L. (2004). Extending the conceptual change approach to mathematics learning and teaching. Learning and Instruction, 14(5), 445–451.
Wertheimer, M. (1959). Productive thinking. New York: Harper & Row.
Westermann, K., & Rummel, N. (2012). Delaying instruction: evidence from a study in a university relearning setting. Instructional Science, 40(4), 673–689.