Toward Single-Atomic-Layer Lithography on Highly Oriented Pyrolytic Graphite Surfaces Using AFM-Based Electrochemical Etching
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fang FZ, Zhang XD, Gao W, Guo YB, Byrne G, Hansen HN (2017) Nanomanufacturing—perspective and applications. CIRP Ann Manuf Technol 66:683–705
Malshe AP et al (2010) Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. CIRP Ann Manuf Technol 59:628–651
Fang FZ (2020) Atomic and close-to-atomic scale manufacturing perspectives and measures. Int J Extreme Manuf 2(3):030201
Khang Y, Lee J (2010) Synthesis of Si nanoparticles with narrow size distribution by pulsed laser ablation. J Nanoparticle Res 12:1349–1354
Guillemin S et al (2019) Etching mechanisms of SiO2 and SiNx: H thin films in HF/Ethanol vapor phase: toward high selectivity batch release processes. J Microelectromec Syst 28:717–723
Dumon P et al (2004) Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol Lett 16:1328–1330
Asghar W, Ramachandran PP, Adewumi A, Noor MR, Iqbal SM (2010) Rapid nanomanufacturing of metallic break junctions using focused ion beam scratching and electromigration. J Manuf Sci Eng Trans ASME 132(030911):1–4
Fang FZ, Xu F (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf Metrol 1:4–31
Tian Y et al (2020) Design of a novel 3D tip-based nanofabrication system with high precision depth control capability. Int J Mech Sci 169:105328
Ringger M, Hidber HR, Schlögl R, Oelhafen P, Güntherodt HJ (1985) Nanometer lithography with the scanning tunneling microscope. Appl Phys Lett 46:832–834
Dagata JA, Schneir J, Harary HH, Evans CJ, Postek MT, Bennett J (1990) Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl Phys Lett 56:2001–2003
Pires D et al (2010) Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328:732–735
Avouris P, Hertel T, Martel R (1997) Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication. Appl Phys Lett 71:285–287
Teuschler T, Mahr K, Miyazaki S, Hundhausen M, Ley L (1995) Nanometer-scale field-induced oxidation of Si(111): H by a conducting-probe scanning force microscope: doping dependence and kinetics. Appl Phys Lett 67:3144–3146
Wang D, Tsau L, Wang KL (1994) Nanometer-structure writing on Si(100) surfaces using a non-contact-mode atomic force microscope. Appl Phys Lett 65:1415–1417
Pérez-Murano F et al (1995) Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy. J Appl Phys 78:6797–6801
Calleja M, Anguita J, García R, Birkelund K, Pérez-Murano F, Dagata JA (1999) Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication. Nanotechnology 10:34–38
Fang FZ (2016) Atomic and close-to-atomic scale manufacturing–A trend in manufacturing development. Front Mech Eng 11:325–327
Mathew PT, Rodriguez BJ, Fang FZ (2020) Atomic and close-to-atomic scale manufacturing: a review on atomic layer removal methods using atomic force microscopy. Nanomanufacturing Metrol 3:167–186
Fölsch S, Martínez-Blanco J, Yang J, Kanisawa K, Erwin SCC (2014) Quantum dots with single-atom precision. Nat Nanotechnol 9:505–508
Eigler DMM, Schweizer EKK (1990) Positioning single atoms with a scanning tunnelling microscope. Nature 344:524–526
Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego
Ni ZH et al (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7:2758–2763
Park JG, Zhang C, Liang R, Wang B (2007) Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes. Nanotechnology 18:405306
Mizutani W, Inukai J, Ono M (1990) Making a monolayer hole in a graphite surface by means of a scanning tunneling microscope. Jpn J Appl Phys 29:L815–L817
Jiang Y, Guo W (2008) Convex and concave nanodots and lines induced on HOPG surfaces by AFM voltages in ambient air. Nanotechnology 19:345302
Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969
Han W, Kunieda M (2016) Research on servo feed control of electrostatic induction feeding micro-ECM. Precis Eng 45:195–202
Weeks BL, Vaughn MW, Deyoreo JJ (2005) Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 21:8096–8098
Orr FM, Scriven LE, Rivas AP (1975) Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech 67:723–742
Yoshimizu N, Hicks B, Lal A, Pollock CR (2010) Scanning probe nanoscale patterning of highly ordered pyrolytic graphite. Nanotechnology 21:095306
McCarley RL, Hendricks SA, Bard AJ (1992) Controlled nanofabrication of highly oriented pyrolytic graphite with the scanning tunneling microscope. J Phys Chem 96:10089–10092
Matsumoto M, Manako T, Imai H (2009) Electrochemical STM investigation of oxidative corrosion of the surface of highly oriented pyrolytic graphite. J Electrochem Soc 156:B1208–B1211
Kurra N, Reifenberger RG, Kulkarni GU (2014) Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices, ACS Appl. Mater Interfaces 6:6147–6163
Penner RM, Heben MJ, Lewis NS, Quate CF (1991) Mechanistic investigations of nanometer-scale lithography at liquid-covered graphite surfaces. Appl Phys Lett 58:1389–1391
Kurra N, Prakash G, Basavaraja S, Fisher TS, Kulkarni GU, Reifenberger RG (2011) Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 22:245302