Total variation approximation for quasi-equilibrium distributions, II
Tài liệu tham khảo
Ball, 2006, Asymptotic analysis of multiscale approximations to reaction networks, Ann. Appl. Probab., 16, 1925, 10.1214/105051606000000420
Barbour, 1976, Quasi-stationary distributions in Markov population processes, Adv. Appl. Probab., 8, 296, 10.2307/1425906
Barbour, 2010, Total variation approximation for quasi-stationary distributions, J. Appl. Probab., 47, 934, 10.1017/S0021900200007270
Beverton, 1957, vol. XIX
Daley, 1999, vol. 15
Darling, 2008, Differential equation approximations for Markov chains, Probab. Surv., 5, 37, 10.1214/07-PS121
Darroch, 1965, On quasi-stationary distributions in absorbing discrete-time Markov chains, J. Appl. Probab., 2, 88, 10.1017/S0021900200031600
Hassell, 1975, Density-dependence in single-species populations, J. Anim. Ecol., 45, 283, 10.2307/3863
Kurtz, 1970, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probab., 7, 49, 10.1017/S0021900200026929
Kurtz, 1971, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Probab., 8, 344, 10.1017/S002190020003535X
Kurtz, 1972, The relationship between stochastic and deterministic models in chemical reactions, J. Chem. Phys., 57, 2976, 10.1063/1.1678692
Maynard-Smith, 1973, The stability of predator–prey systems, Ecology, 54, 384, 10.2307/1934346
McNeil, 1973, Central limit analogues for Markov population processes, J. R. Stat. Soc. Ser. B, 35, 1
Meyn, 1993, Stability of Markovian processes III: Foster–Lyapunov criteria for continuous time processes, Adv. Appl. Probab., 25, 518, 10.1017/S0001867800025520
O’Hely, 2006, A diffusion approach to approximating preservation probabilities for gene duplicates, J. Math. Biol., 53, 215, 10.1007/s00285-006-0001-6
Ricker, 1954, Stock and recruitment, J. Fish. Res. Board Can., 11, 559, 10.1139/f54-039
Ridler-Rowe, 1978, On competition between two species, J. Appl. Probab., 15, 457, 10.1017/S0021900200045836
Roberts, 1996, Quantitative bounds for convergence rates of continuous time Markov processes, Electron. J. Probab., 1, 10.1214/EJP.v1-9
Ross, 2006, A stochastic metapopulation model accounting for habitat dynamics, J. Math. Biol., 52, 788, 10.1007/s00285-006-0372-8
Schach, 1971, Weak convergence results for a class of multivariate Markov processes, Ann. Math. Statist., 42, 451, 10.1214/aoms/1177693397
Seneta, 1966, On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states, J. Appl. Probab., 3, 403, 10.1017/S0021900200114226
van Doorn, 1991, Quasi-stationary distributions and convergence to quasi-stationarity of birth–death processes, Adv. Appl. Probab., 23, 683, 10.1017/S0001867800023880
Verhulst, 1838, Notice sur la loi que la population poursuit dans son accroissement, Corresp. Math. Phys., 10, 113
Yaglom, 1947, Certain limit theorems of the theory of branching processes, Dokl. Akad. Nauk SSSR (NS), 56, 795