Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các n полynот ди abang liao peng s STst retSHA
Tóm tắt
Mục đích của bài báo này là điều chỉnh thuật toán lặp kiểu Halpern-Mann cho các nửa nhóm quasi-ϕ-asymptotically không mở rộng tổng quát để đạt được hội tụ mạnh dưới điều kiện giới hạn chỉ trong khuôn khổ của các không gian Banach. Các kết quả được trình bày trong bài báo nâng cao và mở rộng các kết quả gần đây tương ứng đã được nhiều tác giả công bố. MSC:47J05, 47H09, 49J25.
Từ khóa
#hội tụ mạnh #nửa nhóm #không gian Banach #quy trình lặp #thuật toán Halpern-MannTài liệu tham khảo
Byrne C: A unified treatment of some iterative algorithms in signal processing and image construction. Inverse Probl. 2004, 20: 103–120. 10.1088/0266-5611/20/1/006
Combettes PL: The convex feasibility problem in image recovery. 95. In Advances in Imaging and Electron Physics. Academic Press, New York; 1996:155–270.
Kitahara S, Takahashi W: Image recovery by convex combinations of sunny nonexpansive retractions. Topol. Methods Nonlinear Anal. 1993, 2: 333–342.
Suzuki T: On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces. Proc. Am. Math. Soc. 2003, 131: 2133–2136. 10.1090/S0002-9939-02-06844-2
Xu HK: A strong convergence theorem for contraction semigroups in Banach spaces. Bull. Aust. Math. Soc. 2005, 72: 371–379. 10.1017/S000497270003519X
Chang SS, Yang L, Liu JA: Strong convergence theorem for nonexpansive semi-groups in Banach spaces. Appl. Math. Mech. 2007, 28: 1287–1297. 10.1007/s10483-007-1002-x
Zhang S: Convergence theorem of common fixed points for Lipschitzian pseudo-contraction semi-groups in Banach spaces. Appl. Math. Mech. 2009, 30(2):145–152. 10.1007/s10483-009-0202-y
Chang SS, Lee HWJ, Chan CK: Convergence theorem of common fixed point for asymptotically nonexpansive semigroups in Banach spaces. Appl. Math. Comput. 2009, 212: 60–65. 10.1016/j.amc.2009.01.086
Cho SY, Kang SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 2011, 24: 224–228. 10.1016/j.aml.2010.09.008
Cho YJ, Ciric L, Wang S:Convergence theorems for nonexpansive semigroups in CAT(0) spaces. Nonlinear Anal. 2011. doi:10.1016/j.na.2011.05.082
Thong DV: An implicit iteration process for nonexpansive semigroups. Nonlinear Anal. 2011. doi:10.1016/j.na.2011.05.090
Buong N: Hybrid Ishikawa iterative methods for a nonexpansive semigroup in Hilbert space. Comput. Math. Appl. 2011, 61: 2546–2554. 10.1016/j.camwa.2011.02.047
Mann WR: Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3
Halpern B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 1967, 73: 957–961. 10.1090/S0002-9904-1967-11864-0
Qin XL, Cho YJ, Kang SM, Zhou HY: Convergence of a modified Halpern-type iterative algorithm for quasi- ϕ -nonexpansive mappings. Appl. Math. Lett. 2009, 22: 1051–1055. 10.1016/j.aml.2009.01.015
Wang ZM, Su YF, Wang DX, Dong YC: A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces. J. Comput. Appl. Math. 2011, 235: 2364–2371. 10.1016/j.cam.2010.10.036
Matsushita S, Takahashi W: A strong convergence theorem for relatively nonexpansive mappings in Banach spaces. J. Approx. Theory 2005, 134: 257–266. 10.1016/j.jat.2005.02.007
Nakajo K, Takahashi W: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279: 372–379. 10.1016/S0022-247X(02)00458-4
Nilsrakoo W, Sajung S: Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces. Appl. Math. Comput. 2011, 217(14):6577–6586. 10.1016/j.amc.2011.01.040
Su YF, Xu HK, Zhang X: Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications. Nonlinear Anal. 2010, 73: 3890–3906. 10.1016/j.na.2010.08.021
Kang J, Su Y, Zhang X: Hybrid algorithm for fixed points of weak relatively nonexpansive mappings and applications. Nonlinear Anal. Hybrid Syst. 2010, 4(4):755–765. 10.1016/j.nahs.2010.05.002
Chang SS, Chan CK, Lee HWJ: Modified block iterative algorithm for quasi- ϕ -asymptotically nonexpansive mappings and equilibrium problem in Banach spaces. Appl. Math. Comput. 2011, 217: 7520–7530. 10.1016/j.amc.2011.02.060
Chang SS, Lee HWJ, Chan CK: A new hybrid method for solving a generalized equilibrium problem solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications. Nonlinear Anal. TMA 2010, 73: 2260–2270. 10.1016/j.na.2010.06.006
Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63(1/4):123–145.
Yao Y, Cho YJ, Liou Y-C: Hierarchical convergence of an implicit double-net algorithm for nonexpansive semigroups and variational inequalities. Fixed Point Theory Appl. 2011., 2011: Article ID 101. doi:10.1186/1687–1812–2011–101
Yao Y, Shahzad N: New methods with perturbations for non-expansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 79. doi:10.1186/1687–1812–2011–79
Yao Y, Liou Y-C, Wong M-M, Yao J-C: Strong convergence of a hybrid method for monotone variational inequalities and fixed point problems. Fixed Point Theory Appl. 2011., 2011: Article ID 53. doi:10.1186/1687–1812–2011–53
Yao Y, Chen R: Regularized algorithms for hierarchical fixed-point problems. Nonlinear Anal. 2011, 74: 6826–6834. 10.1016/j.na.2011.07.007
Yao Y, Shahzad N: Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012. doi:10.1007/s11590–011–0286–2
Chang S, Wang L, Tang Y-K, Zao Y-H, Ma ZL: Strong convergence theorems of nonlinear operator equations for countable family of multi-valued total quasi- ϕ -asymptotically nonexpansive mappings with applications. Fixed Point Theory Appl. 2012., 2012: Article ID 69. doi:10.1186/1687–1812–2012–69
Qin X, Agarwal RP, Cho SY, Kang SM: Convergence of algorithms for fixed points of generalized asymptotically quasi-phi-nonexpansive mappings with applications. Fixed Point Theory Appl. 2012., 2012: Article ID 58. doi:10.1186/1687–1812–2012–58
Kim JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of asymptotically quasi- ϕ -nonexpansive mappings. Fixed Point Theory Appl. 2012., 2011: Article ID 10. doi:10.1186/1687–1812–10
Chang S, Kim JK, Lee HWJ, Chan CK: A generalization and improvement of Chidume theorems for total asymptotically nonexpansive mappings in Banach spaces. J. Inequal. Appl. 2012., 2012: Article ID 37. doi:10.1186/1029–242X-2012–37
Alber YI: Metric and generalized projection operators in Banach spaces: properties and applications. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Edited by: Kartosator AG. Dekker, New York; 1996:15–50.