Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves

Mathematische Zeitschrift - Tập 269 - Trang 29-45 - 2010
K. R. Goodearl1, S. Launois2, T. H. Lenagan3
1Department of Mathematics, University of California, Santa Barbara, USA
2School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, UK
3Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, Scotland, UK

Tóm tắt

The algebra of quantum matrices of a given size supports a rational torus action by automorphisms. It follows from work of Letzter and the first named author that to understand the prime and primitive spectra of this algebra, the first step is to understand the prime ideals that are invariant under the torus action. In this paper, we prove that a family of quantum minors is the set of all quantum minors that belong to a given torus-invariant prime ideal of a quantum matrix algebra if and only if the corresponding family of minors defines a non-empty totally nonnegative cell in the space of totally nonnegative real matrices of the appropriate size. As a corollary, we obtain explicit generating sets of quantum minors for the torus-invariant prime ideals of quantum matrices in the case where the quantisation parameter q is transcendental over $${\mathbb{Q}}$$ .

Tài liệu tham khảo

Brown K.A., Goodearl K.R.: Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel (2002) Brown K.A., Goodearl K.R., Yakimov M.: Poisson structures on affine spaces and flag varieties.I. Matrix affine Poisson space. Adv. Math. 206(2), 567–629 (2006) Casteels, K.: A graph theoretic method for determining generating sets of prime ideals in \({\mathcal{O}_q(\mathcal{M}_{m,n}(\mathbb{C}))}\). arXiv:0907.1617 Cauchon G.: Quotients premiers de \({O_q(\mathcal{M}_n(k))}\). J. Algebra 180(2), 530–545 (1996) Cauchon G.: Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra 260(2), 476–518 (2003) Cauchon G.: Spectre premier de O q (M n (k)): image canonique et séparation normale. J. Algebra 260(2), 519–569 (2003) Fulton W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J. 65(3), 381–420 (1992) Goodearl, K.R.: A Dixmier-Moeglin equivalence for Poisson algebras with torus actions. In: Algebra and its Applications, pp. 131–154. Contemp. Math., vol. 419, Amer. Math. Soc., Providence (2006) Goodearl, K.R., Launois, S., Lenagan, T.H.: Totally nonnegative cells and matrix Poisson varieties. arXiv:0905.3631 Goodearl K.R., Lenagan T.H.: Prime ideals invariant under winding automorphisms in quantum matrices. Int. J. Math. 13(5), 497–532 (2002) Goodearl K.R., Lenagan T.H.: Winding-invariant prime ideals in quantum 3 × 3 matrices. J. Algebra 260(2), 657–687 (2003) Goodearl K.R., Letzter E.S.: Prime factor algebras of the coordinate ring of quantum matrices. Proc. Am. Math. Soc. 121(4), 1017–1025 (1994) Goodearl K.R., Letzter E.S.: The Dixmier–Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras. Trans. Am. Math. Soc. 352(3), 1381–1403 (2000) Goodearl K.R., Yakimov M.: Poisson structures on affine spaces and flag varieties. II. Trans. Am. Math. Soc 361, 5753–5780 (2009) Launois, S.: Idéaux premiers \({\mathcal{H}}\)-invariants de l’algèbre des matrices quantiques. Thèse de Doctorat, Université de Reims (2003) Launois S.: Les idéaux premiers invariants de \({O_q(\mathcal{M}_{m,p}(\mathbb{C}))}\). J. Algebra 272(1), 191–246 (2004) Launois, S.: Generators for \({\mathcal{H}}\)-invariant prime ideals in \({O_q(\mathcal{M}_{m,p}(\mathbb{C}))}\), Proc. Edinb. Math. Soc. (2) 47 no. 1, 163–190 (2004) Launois S.: Combinatorics of \({\mathcal{H}}\)-primes in quantum matrices. J. Algebra 309(1), 139–167 (2007) Launois S., Lenagan T.H., Rigal L.: Prime ideals in the quantum Grassmannian. Selecta Math. (N.S.) 13(4), 697–725 (2008) Mini-Workshop: Non-negativity is a quantum phenomenon. Abstracts from the mini-workshop held 1–7 March 2009. Organised by S. Launois and T.H. Lenagan. Oberwolfach Reports 6, no. 14 (2009) Parshall, B., Wang, J.P.: Quantum linear groups. Mem. Am. Math. Soc. 89, 439, vi+157 (1991) Postnikov, A.: Total positivity, grassmannians, and networks. math.CO/0609764 Yakimov, M.: Invariant prime ideals in quantizations of nilpotent Lie algebras. Proc. London Math. Soc. doi:10.1112/plms/pdq006