Tolvaptan-induced hypernatremia related to low serum potassium level accompanying high blood pressure in patients with acute decompensated heart failure

BMC Cardiovascular Disorders - Tập 20 - Trang 1-7 - 2020
Hidetada Fukuoka1, Koichi Tachibana1, Yukinori Shinoda1, Tomoko Minamisaka1, Hirooki Inui1, Keisuke Ueno1, Soki Inoue1, Kentaro Mine1, Kumpei Ueda1, Shiro Hoshida1
1Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan

Tóm tắt

Tolvaptan significantly increases urine volume in acute decompensated heart failure (ADHF); serum sodium level increases due to aquaresis in almost all cases. We aimed to elucidate clinical factors associated with hypernatremia in ADHF patients treated with tolvaptan. We enrolled 117 ADHF patients treated with tolvaptan in addition to standard therapy. We examined differences in clinical factors at baseline between patients with and without hypernatremia in the initial three days of hospitalization. Systolic (p = 0.045) and diastolic (p = 0.004) blood pressure, serum sodium level (p = 0.002), and negative water balance (p = 0.036) were significantly higher and serum potassium level (p = 0.026) was significantly lower on admission day in patients with hypernatremia (n = 22). In multivariate regression analysis, hypernatremia was associated with low serum potassium level (p = 0.034). Among patients with serum potassium level ≤ 3.8 mEq/L, the cutoff value obtained using receiver operating characteristic curve analysis, those with hypernatremia related to tolvaptan treatment showed significantly higher diastolic blood pressure on admission day (p = 0.004). In tolvaptan treatment combined with standard therapy in ADHF patients, serum potassium level ≤ 3.8 mEq/L may be a determinant factor for hypernatremia development. Among hypokalemic patients, those with higher diastolic blood pressure on admission may be carefully managed to prevent hypernatremia.

Tài liệu tham khảo

Yamamura Y, Nakamura S, Itoh S, Hirano T, Onogawa T, Yamashita T, Yamada Y, Tsujimae K, Aoyama M, Kotosai K, Ogawa H, Yamashita H, Kondo K, Tominaga M, Tsujimoto G, Mori T. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther. 1998;287:860–7. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C, Investigators SALT. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112. Gassanov N, Semmo N, Semmo M, Nia AM, Fuhr U, Er F. Arginine vasopressin (AVP) and treatment with arginine vasopressin receptor antagonists (vaptans) in congestive heart failure, liver cirrhosis and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Eur J Clin Pharmacol. 2011;67:333–46. Wang C, Xiong B, Cai L. Effects of tolvaptan in patients with acute heart failure: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2017;17:164. https://doi.org/10.1186/s12872-017-0598-y. Wu MY, Chen TT, Chen YC, Tarng DC, Wu YC, Lin HH, Tu YK. Effects and safety of oral tolvaptan in patients with congestive heart failure: a systematic review and network meta-analysis. PLoS ONE. 2017;12:e0184380. Alskaf E, Tridente A, Al-Mohammad A. Tolvaptan for heart failure, systematic review and meta-analysis of trials. J Cardiovasc Pharmacol. 2016;68:196–203. Gunderson EG, Lillyblad MP, Fine M, Vardeny O, Berei TJ. Tolvaptan for volume management in heart failure. Pharmacotherapy. 2019;39:473–85. Darmon M, Timsit JF, Francais A, Nquile-Makao M, Adrie C, Cohen Y, Garrouste-Orgeas M, Goldgran-Toledano D, Dumenil AS, Jamali S, Cheval C, Allaouchiche B, Souweine B, Azoulay E. Association between hypernatremia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant. 2010;25:2510–5. Funk GC, Lindner G, Druml W, Metnitz B, Schwarz C, Bauer P, Metnitz PG. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med. 2010;36:304–11. Hirai K, Shimomura T, Moriwaki H, Ishii H, Shimoshikiryo T, Tsuji D, Inoue K, Kadoiri T, Itoh K. Risk factors for hypernatremia in patients with short- and long-term tolvaptan treatment. Eur J Clin Pharmacol. 2016;72:1177–83. Kinugawa K, Sato N, Inomata T, Shimakawa T, Iwatake N, Mizuguchi K. Efficacy and safety of tolvaptan in heart failure patients with volume overload—an interim result of post-marketing surveillance in Japan. Circ J. 2014;78:844–52. Kinugawa K, Sato N, Inomata T, Yasuda M, Shibasaki Y, Shimakawa T. Novel risk score efficiently prevents tolvaptan-induced hypernatremic events in patients with heart failure. Circ J. 2018;82:1344–50. Gheorghiade M, Niazi I, Ouyang J, Czerwiec F, Kambatashi J, Zampino M, Orlandi C, Tolvaptan Investigators. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation. 2003;107:2690–6. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C, Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) Investigators. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the ELEVEST outcome trial. JAMA. 2007;297:1319–31. Kinugawa K, Inomata T, Sato N, Yasuda M, Shimakawa T, Bando K, Mizuguchi K. Effectiveness and adverse events of tolvaptan in octogenarians with heart failure interim analyses of Samsca Post-Marketing Surveillance In Heart failurE (SMILE Study). Int Heart J. 2015;56:137–43. Ali F, Dohi K, Okamoto R, Katayama K, Ito M. Novel molecular mechanisms in the inhibition of adrenal aldosterone synthesis: action of tolvaptan via vasopressin V2 receptor-independent pathway. Br J Pharmacol. 2019;176:1315–27. Jujo K, Saito K, Ishida I, Furuki Y, Kim A, Suzuki Y, Sekiguchi H, Yamaguchi J, Ogawa H, Hagiwara N. Randomized pilot trial comparing tolvaptan with furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Fail. 2016;3:177–88. Costello-Boerrigter LC, Boerrigter G, Cataliotti A, Harty GJ, Burnett JC Jr. Renal and anti-aldosterone actions of vasopressin-2 receptor antagonism and B-type natriuretic peptide in experimental heart failure. Circ Heart Fail. 2010;3:412–9. Ma G, Ma X, Wang G, Teng W, Hui X. Effect of tolvaptan add-on therapy in patients with acute heart failure: meta-analysis on randomized controlled trials. BMJ Open. 2019;9:e025537. https://doi.org/10.1136/bmjopen-2018-025537. Sakaida I, Terai S, Kurosaki M, Yasuda M, Okada M, Bando K, Fukuta Y. Effectiveness and safety of tolvaptan in liver cirrhosis patients with edema—interim results of Samsca posT-mARkeTing surveillance in liver cirrhosis (STATR study). Hepatol Res. 2017;47:1137–46. Nagai T, Iwakami N, Nakai M, Nishimura K, Sumita Y, Mizuno A, Tsutsui H, Ogawa H, Anzai T, Investigators JROAD-DPC. Effect of intravenous carperitide versus nitrates as first-line vasodilators on in-hospital outcomes in hospitalized patients with acute heart failure: Insight from a nationwide claim-based database. Int J Cardiol. 2019;280:104–9. Imamura T, Kinugawa K, Shiga T, Kato N, Muraoka H, Minatsuki S, Inaba T, Maki H, Hatano M, Yao A, Kyo S, Nagai R. Novel criteria of urine osmolality effectively predict response to tolvaptan in decompensated heart failure patients: Association between non-responders and chronic kidney disease. Circ J. 2013;77:397–404.