Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration

Journal of the Royal Society Interface - Tập 4 Số 14 - Trang 413-437 - 2007
Anthony D. Metcalfe1, Mark W. J. Ferguson1
1UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK

Tóm tắt

Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or moleculesin situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.

Từ khóa


Tài liệu tham khảo

10.4049/jimmunol.166.12.7556

10.1016/0022-4804(91)90097-6

10.1111/j.1601-6343.2005.00326.x

10.1006/dbio.2002.0816

10.1101/gad.1086903

10.1006/dbio.1995.1141

10.1046/j.1469-7580.1997.19030351.x

10.1042/BA20030229

10.1001/archderm.139.4.510

10.1136/bmj.326.7380.88

10.1097/00006534-199811000-00022

10.1073/pnas.76.3.1274

10.1080/10739680600775940

10.1002/path.1578

10.1016/S0140-6736(95)90279-1

10.1016/S0305-4179(01)00019-5

10.1016/S0002-9610(02)00813-9

10.1111/1523-1747.ep12471822

10.1111/1523-1747.ep12298286

Broadley K.N, 1989, The diabetic rat as an impaired wound healing model: stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor, Biotechnol. Ther, 1, 55

10.1126/science.276.5309.81

10.1126/science.1115200

10.1016/j.copbio.2003.09.005

Bucala R, 1994, Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair, Mol. Med, 1, 71, 10.1007/BF03403533

10.1016/j.clindermatol.2004.07.019

Butler C.E, 2005, Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane, Adv. Biochem. Eng. Biotechnol, 94, 23

Caplan A.I, 2003, Embryonic development and the principles of tissue engineering, Novartis Found Symp, 249, 17, 10.1002/0470867973.ch3

10.1002/jemt.10287

10.1073/pnas.94.12.6307

Chettibi S, 1999, Inflammation: basic principles and clinical correlates, 3, 864

10.1201/b14004-13

Clark R.A The molecular and cellular biology of wound repair. 2nd edn. 1996 New York NY:Plenum Press pp. 3–35.

10.1006/clin.1998.4519

10.1046/j.1524-475x.2001.00360.x

10.1186/gb-2004-6-1-r5

Cordeiro M.F, 2002, Transforming growth factor-beta function blocking already effective as therapeutic strategy, Circulation, 106, 130

10.1038/sj.gt.3301865

10.1002/(SICI)1097-0177(199807)212:3<385::AID-AJA6>3.0.CO;2-D

Cowin A.J, 2001, Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds, Eur. J. Dermatol, 11, 424

10.1007/s004410100443

10.1097/00006534-200111000-00045

10.1097/01.PRS.0000054837.47432.E7

10.1002/jbm.820250704

10.1016/j.ydbio.2005.02.019

10.1111/j.1346-8138.2005.tb00811.x

Douglas B.S, 1972, Conservative management of guillotine amputation of the finger of children, Aust. Paediatr. J, 8, 86

10.1006/mthe.2002.0579

Dunphy J.E, 1967, The healing of wounds, Can. J. Surg, 10, 281

Ehrenreich M, 2006, Update on dermal substitutes, Acta Dermatovenerol. Croat, 14, 172

10.1046/j.1524-475X.1999.00201.x

10.1111/j.1524-4725.1992.tb03514.x

10.1002/dvdy.10252

10.1016/S0168-8278(00)80412-2

Ferguson M.W.J, 2002, Scar wars, Br. Dent. J, 192, 475, 10.1038/sj.bdj.4801404

10.1098/rstb.2004.1475

10.1097/00006534-199604000-00029

10.1126/science.279.5356.1528

Ferretti P, 2001, FGF signaling and blastema growth during amphibian tail regeneration, Int. J. Dev. Biol, 45, 127

10.1074/jbc.270.21.12607

10.1016/j.ceb.2003.10.011

Gardiner D.M, 1996, Molecular mechanisms in the control of limb regeneration: the role of homeobox genes, Int. J. Dev. Biol, 40, 797

10.1016/S1084952102000903

Garg H.G& Longaker M.T Scarless wound healing. 2000 New York NY:Marcel Dekker.

10.1089/ten.2004.10.1251

10.1111/j.1743-6109.2006.00121.x

Gillitzer R, 2001, Chemokines in cutaneous wound healing, J. Leukoc. Biol, 69, 513, 10.1189/jlb.69.4.513

10.1111/j.1469-7580.2006.00626.x

10.1101/gad.12.1.11

10.1046/j.1524-475x.2001.00213.x

10.1002/ar.1092410302

10.1002/jmor.1051460408

10.1002/jez.1402610412

10.1111/j.1749-6632.2002.tb03056.x

10.1038/nrm1858

10.1016/j.ymthe.2004.02.018

10.1038/43919

10.3727/000000005783982521

10.1111/j.0022-202X.2005.23832.x

Han M, 2005, Limb regeneration in higher vertebrates: developing a roadmap, Anat. Rec. (Part B: New Anat), 287, 14, 10.1002/ar.b.20082

10.1097/00004630-199209000-00004

10.1111/j.1749-6632.2002.tb03114.x

10.1096/fj.01-0049com

10.1002/dvdy.10239

Hayen W, 1999, Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture, J. Cell Sci, 112, 2241, 10.1242/jcs.112.13.2241

10.1016/0925-4773(94)90022-1

10.1097/01.PRS.0000053842.90564.26

10.1046/j.1365-2133.2003.05298.x

Hynes R.O Fibronectins . 1990 New York NY:Springer.

10.1016/S0022-3468(74)80220-4

10.1016/S0960-9822(03)00294-X

10.1098/rstb.2004.1467

10.1126/science.1073823

10.1111/1523-1747.ep12330565

10.1016/0092-8674(93)90251-K

10.1016/S0736-5748(99)00026-X

10.1242/jcs.02483

10.1046/j.1523-1747.2000.00884.x

10.1016/S0142-9612(99)00207-0

10.4049/jimmunol.170.5.2331

10.1007/PL00007466

10.1007/s004030050397

10.1111/1523-1747.ep12276858

10.1002/dvdy.10085

10.1016/0092-8674(94)90290-9

10.1016/S0925-4773(00)00308-7

10.1016/S0006-3495(97)78793-9

10.2174/1389201023378490

10.1111/1523-1747.ep12470973

Levine J.H, 1993, Spatial and temporal patterns of immunoreactive transforming growth factor beta 1, beta 2, and beta 3 during excisional wound repair, Am. J. Pathol, 143, 368

10.1073/pnas.95.7.3902

10.1016/S0304-4165(00)00118-5

10.1007/s003350010230

10.1016/j.biomaterials.2005.03.030

10.1046/j.1524-475X.1998.60304.x

Lingen M.W, 2001, Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing, Arch. Pathol. Lab. Med, 125, 67, 10.5858/2001-125-0067-ROLAEC

10.1097/00000658-199401000-00011

10.1016/S0168-3659(03)00097-X

10.1096/fj.02-0959fje

10.1074/jbc.M505262200

10.1002/dvdy.10222

Manak J.R, 1994, A class act: conservation of homeodomain protein functions, Dev. Suppl, 61

10.1111/j.1469-7580.2006.00631.x

10.1016/j.bbrc.2005.02.143

10.4049/jimmunol.166.4.2479

10.1016/0014-4827(91)90462-4

10.1006/excr.1995.1293

McCallion R.L, 1996, The molecular and cellular biology of wound repair, 561

10.1016/S0741-5214(98)70064-3

10.1042/BST0330413

10.1111/j.1469-7580.2006.00632.x

10.1126/science.276.5309.60

10.1016/S0167-7799(03)00033-7

10.1016/j.yexcr.2004.11.011

10.1111/j.1365-2184.1994.tb01425.x

10.1074/jbc.273.39.25279

Niswander L, 1992, Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse, Development, 114, 755, 10.1242/dev.114.3.755

10.1038/361068a0

10.1097/01.prs.0000185611.87601.b8

10.1016/S1357-2725(96)00120-3

10.1006/bbrc.1994.2542

10.1016/S0092-8674(01)00208-2

10.1097/00006534-199507000-00025

10.1016/S0925-4773(00)00471-8

10.1080/089419399272647

10.1007/BF02521744

10.1097/00000637-200110000-00010

10.1016/S1471-4892(01)00118-7

10.1001/archderm.134.3.344

10.1074/jbc.M007601200

10.1083/jcb.109.1.429

10.1002/jcb.240450403

10.1097/00004630-199901001-00011

10.1007/s11926-006-0055-x

10.1529/biophysj.104.050682

10.1016/S0002-9610(99)00134-8

10.1002/dvdy.10242

10.1126/science.1072530

Rappolee D.A, 1994, Expression and function of FGF-4 in peri-implantation development in mouse embryos, Development, 120, 2259, 10.1242/dev.120.8.2259

10.1016/S0092-8674(75)80001-8

10.1038/265421a0

10.1111/j.1749-6632.1990.tb17931.x

10.1098/rstb.1990.0050

10.1097/00007890-200012150-00009

10.1002/jcp.20270

Rudolph R, 1976, The effect of skin graft preparation on wound contraction, Surg. Gynecol. Obstet, 142, 49

10.1172/JCI114957

10.1001/archotol.129.3.345

10.1111/1523-1747.ep12606221

10.1016/S0074-7696(08)61986-5

10.1038/11926

10.1002/jbm.b.30291

10.1002/jbm.a.20091

10.1046/j.1524-475X.2002.10609.x

10.1016/0140-6736(92)90009-R

Shah M, 1994, Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents, J. Cell Sci, 107, 1137, 10.1242/jcs.107.5.1137

10.1016/0140-6736(92)90009-R

Shah M, 1995, Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring, J. Cell Sci, 108, 985, 10.1242/jcs.108.3.985

10.1016/S0006-291X(05)81577-3

10.1038/359843a0

10.1002/dvdy.10232

10.1054/bjps.2002.3831

10.1046/j.1432-0436.1997.6210033.x

10.1046/j.1365-4362.2003.01726.x

10.1016/j.copbio.2005.08.002

10.1038/nature00902

10.1016/j.clindermatol.2004.07.023

10.1177/0145721706286897

10.1111/1523-1747.ep12335766

10.1016/S0378-1119(97)00187-X

10.1016/S0960-9822(99)80362-5

10.1016/S0092-8674(00)00050-7

10.1016/S0014-5793(01)03126-X

10.1016/j.jdermsci.2005.05.001

10.1111/j.1600-6143.2005.00790.x

10.1073/pnas.0505964102

Tsai C.C, 1999, The use of composite acellular allodemis-ultrathin autograft on joint area in major burns patients—one year follow up, Kaohsiung J. Med. Sci, 15, 651

10.1111/j.1469-7580.2006.00634.x

10.1007/0-387-34134-X_5

10.1186/ar614

10.1016/j.jconrel.2004.10.029

10.1046/j.1524-475X.1998.60107.x

10.1046/j.1365-2273.2003.00686.x

10.1146/annurev.bioeng.5.040202.121615

10.1097/00004630-198911000-00015

10.1038/356314a0

10.1098/rstb.1998.0247

10.1073/pnas.89.15.6896

10.1016/S0012-1606(05)80018-1

Whitby D.J, 1991, The extracellular matrix of lip wounds in fetal, neonatal and adult mice, Development, 112, 651, 10.1242/dev.112.2.651

10.1128/MCB.8.8.3415

Wu C, 1996, Identification of anew biological function for the integrin alpha v beta 3: initaition of fibronectin matrix assembly, J. Cell Sci, 108, 821, 10.1242/jcs.108.2.821

10.1097/01.LAB.0000027841.50269.61

10.1111/j.1067-1927.2005.130407.x

10.1002/jbm.820140108

10.1046/j.1523-1747.2003.12039.x

10.1083/jcb.129.5.1177

Zenjari C, 1996, Experimental evidence for FGF-1 control of blastema cell proliferation during limb regeneration of the amphibian Pleurodeles waltl, Int. J. Dev. Biol, 40, 965

10.1111/j.0022-202X.2005.23716.x