Timing in cognition and EEG brain dynamics: discreteness versus continuity

Cognitive Processing - Tập 7 - Trang 135-162 - 2006
Andrew A. Fingelkurts1, Alexander A. Fingelkurts1
1BM-SIENCE Brain and Mind Technologies Research Centre, Espoo, Finland

Tóm tắt

This article provides an overview of recent developments in solving the timing problem (discreteness vs. continuity) in cognitive neuroscience. Both theoretical and empirical studies have been considered, with an emphasis on the framework of operational architectonics (OA) of brain functioning (Fingelkurts and Fingelkurts in Brain Mind 2:291–29, 2001; Neurosci Biobehav Rev 28:827–836, 2005). This framework explores the temporal structure of information flow and interarea interactions within the network of functional neuronal populations by examining topographic sharp transition processes in the scalp EEG, on the millisecond scale. We conclude, based on the OA framework, that brain functioning is best conceptualized in terms of continuity–discreteness unity which is also the characteristic property of cognition. At the end we emphasize where one might productively proceed for the future research.

Tài liệu tham khảo

Alexandrov YuI (1999) Psychophysiological regularities of the dynamics of individual experience and the “stream of consciousness.” In: Taddei-Feretti C, Musio C (eds) Series on biophysics and biocybernetics. Neural basis and psychological aspects of consciousness, Vol. 8—Biocybernetic. World Scientific, Singapore, pp 201–219

Allport DA (1968) Phenomenal simultaneity and perceptual moment hypothesis. Br J Psychol 59:395–406

Alpern M (1952) Metacontrast. Am J Optomol 29:631–646

Arbib MA (2001) Co-evolution of human consciousness and language. In: Marijuan EP (ed) Cajal and consciousness: scientific approaches to consciousness on the Centential of Ramon y Cajal’s Textura. Vol. 929. Annals of the NYAS, New York, pp 195–220

Baars BJ (1997) In the theatre of consciousness: global workspace theory, a rigorous scientific theory of consciousness. J Conscious Stud 4:292–309

Bachmann T (1994) Psychophysiology of visual masking. Nova Science, Commack, New York

Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:364–374

Basar E (2004) Macrodynamics of electrical activity in the whole brain. Int J Bifurcat Chaos 14:363–381

Basar E (2005) Memory as the “whole brain work.” A large-scale model based on “oscillations in super-synergy.” Int J Psychophysiol 58:199–226

Birch T (2002) Introduction to mental images. Homepage, URL = http://www.gis.net/∼tbirch/hp5.html

Bolton TL (1894) Rhythm. Am J Psychol 6:145–238

Borisov SV (2002) Studying of a phasic structure of the alpha activity of human EEG. PhD dissertation, Moscow State University, Moscow, Russian Federation, 213 pp (in Russian)

Braitenberg V (1980) Alcune considerazione sui meccanismi cerebrali del linguaggio. In: Braga G, Braitenberg V, Cipolli C, Coseriu E, Crespi-Reghizzi S, Mehler J, Titone R (eds) L’accostamento interdisciplinare allo studio del linguaggio. Franco Angeli Editore, Braitenberg

Braitenberg V, Pulvermüller F (1992) Entwurf einer neurologischen Theorie der Sprache. Naturwissenschaften 79:103–117

Callaway E, Layne RS (1964) Interaction between the visual evoked response and two spontaneous biological rhythms: the EEG alpha cycle and the cardiac arousal cycle. Ann NY Acad Sci 112:421–431

Dietze G (1885) Untersuchungen über den Umfang des Bewusstseins bei regelmässig auf einander folgenden Schalleindrücken. Philos Stud 2:362–393

Dinse H (1990) A temporal structure of cortical information processing. Concepts Neurosci 1:199–238

Eliasmith C (2000) Is the brain analog or digital? The solution and its consequences for cognitive science. Cogn Sci Q 1:147–170

Eliasmith C (2001) Attractive and in-discrete: a critique of two putative virtues of the dynamicist theory of mind. Minds Mach 11:417–426

Fingelkurts AnA (1998) Time-spatial organization of human EEG segment’s structure. PhD Dissertation, Moscow State University, Moscow, Russian Federation 415 pp (in Russian)

Fingelkurts AnA, Fingelkurts AlA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2:261–296, URL = http://www.bm-science.com/team/art18.pdf

Fingelkurts AnA, Fingelkurts AlA (2003) Operational architectonics of perception and cognition: a principle of self-organized metastable brain states. In: VI Parmenides workshop—Perception and thinking, Institute of Medical Psychology. April 5–10, Elba/Italy (invited full-text contribution) URL = http://www.bm-science.com/team/art24.pdf

Fingelkurts AnA, Fingelkurts AlA (2004) Making complexity simpler: multivariability and metastability in the Brain. Int J Neurosci 114:843–862

Fingelkurts AnA, Fingelkurts AlA (2005) Mapping of the brain operational architectonics. Chapter 2. In: Chen FJ (ed) Focus on brain mapping research. Nova Science Publishers, Inc., pp 59–98. URL = http://www.bm-science.com/team/chapt3.pdf

Fingelkurts AlA, Fingelkurts AnA, Krause CM, Kaplan AYa (2003c) Systematic rules underlying spectral pattern variability: Experimental results and a review of the evidence. Int J Neurosci 113:1447–1473

Fraisse P (1978) Time and rhythm perception. In: Carterette EC, Friedman MP (eds) Handbook of perception, Vol. 8. Academic, New York, pp 203–254

Habel Ch (1994) Discreteness, finiteness, and the structure of topological spaces. In: Eschenbach C, Habel Ch, Smith B (eds) Topological foundations of cognitive science. Report 37. Graduiertenkolleg Kognitionswissenschaft Hamburg, Hamburg, pp 81–90

Hobson JA (1992) A new model of brain-mind state: activation level, input source, and mode of processing (AIM). In: Antrobus J, Bertini M (eds) The neuropsychology of dreaming sleep. Lawrence Erlbaum Associates, Hillsdale

James W (1890) The principles of psychology. Vol. I. Dover, New York

Kaplan AYa (1995) On the frame architecture of central information processing: EEG analysis. In: The fourth IBRO World congress of neuroscience, p 438

Kaplan AYa (1998) Nonstationary EEG: methodological and experimental analysis. Usp Fiziol Nauk (Success in Physiological Sciences) 29:35–55 (in Russian)

Kaplan AYa (1999) The problem of segmental description of human electroencephalogram (translated from Physiol Cheloveka). Human Physiol 25:107–114

Kaplan AYa, Borisov SV (2002) The differences in structural synchrony of the brain electrical field in alpha range between normal control and schizophrenic adolescents. Human Brain Mapping Meeting (Sendai, Japan, 2002). Poster No.: 10472. NeuroImage No 329

Kaplan AYa, Borisov SV (2003) Dynamic properties of segmental characteristics of EEG alpha activity in rest conditions and during cognitive load (in Russian). Zh Vyssh Nerv Deiat Im IP Pavlova (IP Pavlov J High Nerv Act) 53:22–32

Kirillov AB, Makarenko VI (1991) Metastability and phase transition in neural networks: statistical approach. In: Holden AV, Kryukov VI (eds). Neurocomputers and attention, Vol. 2. Manchester University Press, Manchester, pp 825–922

Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48

Köhler W (1940) Dynamics in psychology. Grove Press, New York

Korb KB (1993) Stage effects in the Cartesian theater: a review of Daniel Dennett’s consciousness explained. PSYCHE 1(4), December 1993, URL = http://www.psyche.cs.monash.edu.au/v1/psyche-1–04-korb.html

Landa P, Gribkov D, Kaplan A (2000) Oscillatory processes in biological systems. In: Malik SK, Chandrashekaran MK, Pradhan N (eds) Nonlinear phenomena in biological and physical sciences. Indian National Science Academy, New Deli, pp 123–152

Libet B, Gleason CA, Wright EW, Pearl DK (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness potential): the unconscious initiation of a freely voluntary act. Brain 106:623–642

Mangan BB (1993b) Some philosophical and empirical implications of the fringe. Conscious Cogn 2:142–154

Medison G (2001) Functional modeling of the human timing mechanism. PhD Dissertation, Acta Universitatis Upsaliensis, Uppsala, Sweden, 77 pp

Metzinger T (1995) Faster than thought. Holism, homogeneity and temporal coding. In: Metzinger T (ed) Conscious experience. Imprint Academic and Paderborn, Thorverton, UK, URL = http://www.imprint.co.uk/online/Metz1.html

Müller GE (1896) Zur psychophysik der gesichtsempfindungen. Z Psychol 10:1–82

Pascual-Marqui R, Michel C, Lehmann D (1995) Segmentation of brain electrical activity into microstates. IEEE Trans Biomed Eng 42:658–665

Poznanski RR (2002) Dendritic integration in a recurrent network. J Integr Neurosci 1:69–99

Pulvermüller F (1999) Words in the brain’s language. Behav Brain Sci 22:253–336

Purpura DP (1972) Functional studies of thalamic internuclear interactions. Brain Behav 6:203–234

Rensing L, Meyer-Grahle U, Ruoff P (2001) Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol Int 18:329–369

Revonsuo A (1993) Dennett and dissociations of consciousness. Psycoloquy: 4(59), Split Brain (4), URL = http://www.psycprints.ecs.soton.ac.uk/archive/00000353/

Revonsuo A (2001) Can functional brain imaging discover consciousness in the brain? J Conscious Stud 8:3–23

Shallice T (1964) The detection of change and the perceptual moment hypothesis. Br J Stat Psychol 17:113–135

Skinner JE, Molnar M (2000) “Response cooperativity”: a sign of a nonlinear neocortical mechanism for stimulus-binding during classical conditioning in the act. In: Malik SK, Chandrashekaran MK, Pradhan N (eds) Nonlinear phenomena in biological and physical sciences. Indian National Science Academy, New Deli, pp 223–248

Stroud JM (1955) The fine structure of psychological time. In: Quastler H (ed) Information theory in psychology: problems and methods. The Free Press, Glencoe, Ill, pp 174–205

Taylor K (2001) Applying continuous modelling to consciousness. J Conscious Stud 8:45–60

Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851

Treisman M (1984) Temporal rhythms and cerebral rhythms. Ann N Y Acad Sci 423:542–565

Uhr L (1994) Digital and analog microcircuit and sub-net structures for connectionist networks. In: Honavar V, Uhr L (eds) Artificial intelligence and neural networks: steps toward principled integration. Academic, Boston, pp 341–370

Vanagas V (1994) Active, hierarchical visual system organization and attentional information processing. In: 39. Internationales Wissenschaftliches Kolloquium. Tehnische Universitat Ilmenau, Thüringen, Band 2, pp 91–94

Varela FJ (2000) Neural synchrony and consciousness: are we going somewhere? Conscious Cogn 9:S26–S27

Venables PH (1960) Periodicity in reaction time. Br J Psychol 51:37–43

von Baer KE (1864) Welche Auffasung der lebendigen Natur ist die richtige? Und wie ist diese Auffasung auf die Entomologie auzuwenden? In: Schmitzdorff H (ed) Reden gehalten in wiss. Versammlungen und kleine Aufsätze vermischten Inhalts. Verlag der kaiserl, Hofbuchhandlung, St. Petersburg, pp 237–287

von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24:95–104