Thời gian đảo ngược và thời gian đi qua cuối của các quá trình khuếch tán với ứng dụng trong quản lý rủi ro tín dụng
Tóm tắt
Từ khóa
#thời gian đảo ngược #thời gian đi qua cuối #quản lý rủi ro tín dụng #khuếch tán tuyến tính #quá trình đòn bẩyTài liệu tham khảo
Baldeaux, J., Platen, E.: Functionals of Multidimensional Diffusions with Applications to Finance. Springer, Cham (2013)
Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)
Borodin, A.N., Salminen, P.: Handbook of Brownian Motion – Facts and Formulae, 2nd edn. Birkhäuser, Basel (2015)
Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. Springer, New York (2005)
Chung, K.L., Williams, R.J.: Introduction to Stochastic Integration, 2nd edn. Birkhäuser, Boston (1990)
Duan, J.C.: Maximum likelihood estimation using price data of the derivative contract. Math. Finance 4, 155–167 (1994)
Duan, J.C.: Correction: maximum likelihood estimation using price data of the derivative contract. Math. Finance 10, 461–462 (2000)
Dynkin, E.B.: Markov Processes II. Springer, Berlin (1965)
Elliott, R.J., Jeanblanc, M., Yor, M.: On models of default risk. Math. Finance 10, 179–195 (2000)
Farrell, S. and agencies: American Apparel files for bankruptcy. The Guardian (2015). https://www.theguardian.com/business/2015/oct/05/american-apparel-files-for-bankruptcy. Accessed on 2017/05/27
Gerber, H.U., Shiu, E.S., Yang, H.: The Omega model: from bankruptcy to occupation times in the red. Eur. Actuar. J. 2, 259–272 (2012)
Getoor, R.K., Sharpe, M.J.: Last exit times and additive functionals. Ann. Probab. 1, 550–569 (1973)
Halsted, D.J., Brown, D.E.: Zakian’s technique for inverting Laplace transforms. Chem. Eng. J. 3, 312–313 (1972)
Jeanblanc, M., Rutkowski, M.: Modelling of default risk: an overview. In: Yong, J., Cont, R. (eds.) Mathematical Finance: Theory and Practice, pp. 171–269. Higher Education Press, Beijing (2000)
Kapner, S.: American Apparel CEO made crisis a pattern. Wall St. J. (2014). http://www.wsj.com/articles/american-apparel-ceo-made-crisis-a-pattern-1403742953. Accessed on 2018/11/26
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1998)
Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)
Kuznetsov, A., Kyprianou, A.E., Rivero, V.: The theory of scale functions for spectrally negative Lévy processes. In: Barndorff-Nielsen, O.E., et al. (eds.) Lévy Matters II. Lecture Notes in Mathematics, vol. 2061, pp. 97–186. Springer, Berlin (2013)
Kyprianou, A.E.: Fluctuations of Lévy Processes with Applications, 2nd edn. Springer, Berlin (2014)
Lehar, A.: Measuring systemic risk: a risk management approach. J. Bank. Finance 29, 2577–2603 (2005)
McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools, revised edn. Princeton University Press, Princeton (2015)
Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29, 449–470 (1974)
Meyer, P.A., Smythe, R.T., Walsh, J.B.: Birth and death of Markov processes. In: Le Cam, L.M., et al. (eds.) Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Probability Theory, pp. 295–305. University of California Press, Berkeley (1972)
Nagasawa, M.: Time reversions of Markov processes. Nagoya Math. J. 24, 177–204 (1964)
Pitman, J., Yor, M.: Bessel processes and infinitely divisible laws. In: Williams, D. (ed.) Stochastic Integrals. Lecture Notes in Mathematics, vol. 851, pp. 285–370. Springer, Berlin (1981)
Rogers, L., Williams, D.: Diffusions, Markov Processes and Martingales, vol. 2, 2nd edn. Cambridge University Press, Cambridge (2000)
Salminen, P.: One-dimensional diffusions and their exit spaces. Math. Scand. 54, 209–220 (1984)
Salminen, P.: Optimal stopping of one-dimensional diffusions. Math. Nachr. 124, 85–101 (1985)
Sharpe, M.J.: Some transformations of diffusions by time reversal. Ann. Probab. 8, 1157–1162 (1980)
Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. Lond. Math. Soc. s3-28, 738–768 (1974)
Zhang, H.: Occupation times, drawdowns, and drawups for one-dimensional regular diffusions. Adv. Appl. Probab. 47, 210–230 (2015)