Time-optimal planning for quadrotor waypoint flight

Science Robotics - Tập 6 Số 56 - 2021
Philipp Foehn1, Angel Romero1, Davide Scaramuzza1
1Zurich Open Repository and Archive University of Zurich University Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch

Tóm tắt

A solution for time-optimal quadrotor trajectory planning through optimization outperforms professional human pilots in racing.

Từ khóa


Tài liệu tham khảo

10.1002/rob.21962

E. Ackermann Ai-powered drone learns extreme acrobatics https://spectrum.ieee.org/automaton/robotics/drones/ai-powered-drone-extreme-acrobatics (2020) [accessed 21 June 2021].

10.1177/1756829317736204

10.1007/s11370-018-00271-6

P. Foehn D. Brescianini E. Kaufmann T. Cieslewski M. Gehrig M. Muglikar D. Scaramuzza AlphaPilot: Autonomous drone racing in Proceedings of Robotics: Science and Systems (RSS 2020) pp. 1–9.

A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, D. Scaramuzza, Deep drone racing: From simulation to reality with domain randomization. IEEE Transact. Robot. 36, 1–14 (2019).

S. M. LaValle Planning Algorithms (Cambridge Univ. Press 2006).

L. S. Pontryagin E. Mishchenko V. Boltyanskii R. Gamkrelidze The Mathematical Theory of Optimal Processes (Wiley 1962).

S. Bouabdallah R. Siegwart Full control of a quadrotor in Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE 2007) pp. 153–158.

10.1109/MRA.2012.2206474

10.1177/0278364911434236

M. W. Mueller M. Hehn R. D’Andrea A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification in Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE 2013) pp. 3480–3486.

D. J. Webb J. van den Berg Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics in Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA) (IEEE 2013) pp. 5054–5061.

R. Allen M. Pavone A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance in AIAA Guidance Navigation and Control Conference 4 to 8 January 2016 San Diego CA (2016).

10.1109/LRA.2018.2795654

10.1109/LRA.2019.2927938

10.2514/3.20223

M. Geisert N. Mansard Trajectory generation for quadrotor based systems using numerical optimal control in 2016 IEEE International Conference on Robotics and Automation (ICRA ) (IEEE 2016) pp. 2958–2964.

F. Augugliaro A. P. Schoellig R. D’Andrea Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE 2012) pp. 1917–1922.

B. Penin R. Spica P. Robuffo Giordano F. Chaumette Vision-based minimum-time trajectory generation for a quadrotor UAV in Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE 2017) pp. 6199–6206.

10.1007/s10514-012-9282-3

W. V. Loock G. Pipeleers J. Swevers Time-optimal quadrotor flight in Proceedings of the 2013 European Control Conference (ECC ) (IEEE 2013) pp. 1788–1792.

10.1109/TCST.2017.2709268

G. Ryou E. Tal S. Karaman Multi-fidelity black-box optimization for time-optimal quadrotor maneuvers. arXiv:2006.02513 [cs.RO] (3 June 2020).

10.1177/0278364913506757

10.1016/0024-3795(68)90052-9

A. Richards J. P. How Aircraft trajectory planning with collision avoidance using mixed integer linear programming in Proceedings of the 2002 American Control Conference (ACC) (IEEE 2002) pp. 1936–1941.

D. Falanga P. Foehn P. Lu D. Scaramuzza PAMPC: Perception-aware model predictive control for quadrotors in Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE 2018) pp. 1–8.

10.1002/oca.939

10.1007/s12532-014-0071-1

M. Diehl H. G. Bock H. Diedam P. B. Wieber Fast Motions in Biomechanics and Robotics (Springer 2006).

10.1109/LRA.2021.3064282

10.1109/LRA.2017.2776353

D. Mellinger V. Kumar Minimum snap trajectory generation and control for quadrotors in Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE 2011) pp. 2520–2525.

10.1007/s12532-018-0139-4

10.1007/s10107-004-0559-y

S. Shah D. Dey C. Lovett A. Kapoor in Field and Service Robotics (Springer 2017) pp. 621–635.

R. Madaan N. Gyde S. Vemprala M. Brown K. Nagami T. Taubner E. Cristofalo D. Scaramuzza M. Schwager A. Kapoor AirSim Drone Racing Lab in Proceedings of the NeurIPS 2019 Competition and Demonstration Track Proceedings of Machine Learning Research Series vol. 123 pp. 177–191 (2019).