Time domain structures: What and where they are, what they do, and how they are made

Geophysical Research Letters - Tập 42 Số 10 - Trang 3627-3638 - 2015
F. S. Mozer1, O. V. Agapitov1,2, A. V. Artemyev3, J. F. Drake4, V. Krasnoselskikh5, Solène Lejosne1, I. Y. Vasko3
1Space Sciences Laboratory, University of California, Berkeley, California USA
2Taras Shevchenko National University of Kiev, Kiev, Ukraine
3Space Research Institute, Russian Academy of Science, Moscow, Russia
4Physics Department, University of Maryland, College Park, Maryland, USA
5LPC2E/CNRS-University of Orleans, Orleans, France

Tóm tắt

AbstractTime domain structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are ≥1 ms pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic‐field‐aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers and they also produce field‐aligned electrons that may be responsible for some types of auroras. These field‐aligned electron distributions result from at least three processes. The first process is parallel acceleration by Landau trapping in the TDS parallel electric field. The second process is Fermi acceleration due to reflection of electrons by the TDS. The third process is an effective and rapid pitch angle scattering resulting from electron interactions with the perpendicular and parallel electric and magnetic fields of many TDS. TDS are created by current‐driven and beam‐related instabilities and by whistler‐related processes such as parametric decay of whistlers and nonlinear evolution from oblique whistlers. New results on the temporal relationship of TDS and particle injections, types of field‐aligned electron pitch angle distributions produced by TDS, the mechanisms for generation of field‐aligned distributions by TDS, the maximum energies of field‐aligned electrons created by TDS in the absence of whistler mode waves, TDS generation by oblique whistlers and three‐wave‐parametric decay, and the correlation between TDS and auroral particle precipitation, are presented.

Từ khóa


Tài liệu tham khảo

10.1029/2001JA005073

10.1029/2001JA005090

10.1002/2013JA019223

10.1007/BF00642272

10.1103/PhysRevLett.102.225004

10.1002/2014GL061380

10.1063/1.4769726

10.1063/1.4836595

10.1002/2014GL061248

10.1063/1.4897945

10.1029/95GL03595

10.1029/98GL02111

10.1029/97JA00338

10.1029/2001GL014046

Cattell C., 2003, Large amplitude solitary waves in and near the Earth's magnetosphere, magnetopause and bow shock: Polar and Cluster observations, Science, 299, 383

10.1002/2013GL058507

10.1029/2009JA015107

10.1016/j.jastp.2005.03.27

10.1002/2015GL063528

10.1029/98GL00636

10.1103/PhysRevLett.87.045003

10.1103/PhysRevLett.102.155002

10.1103/PhysRevLett.101.255003

10.1029/98GL50870

10.1029/1999GL900435

10.1029/JA084iA08p04297

Joyce G., 1978, Numerical simulation of plasma double layers, J. Plasma Phys., 2391

Karpman V. I., 1982, Self‐focusing of whistlers, Zh. Eksp. Teor. Fiz., 83

10.1029/2010GL044845

10.1103/PhysRevLett.105.165002

10.1007/s11214-013-9993-6

Lakhina G. S. D. A.Gurnett N.Cornilleau‐Wehrlin A. N.Fazakerley I.Dandouras andE.Lucek(2010) On the propagation and modulation of electrostatic solitary waves observed near the magnetopause on Cluster Modern Challenges in Nonlinear Plasma Physics: A Festchrift Honoring the Career of K Papadopoulos AIP Conference Proceedings 1320 American Institute of Physics Melville N. Y.

10.1088/0029-5515/13/2/007

10.5194/npg-18-41-2011

10.1002/2013JA018920

10.1002/jgra.50102

10.1002/2014GL061109

10.1029/94GL01284

10.1007/s11214-008-9380-x

10.1029/98JA00760

10.1063/1.1692361

10.1103/PhysRevLett.23.1087

10.1029/2009GL037463

10.1029/2009JA014718

10.1103/PhysRevLett.38.292

10.1103/PhysRevLett.111.235002

10.1103/PhysRevLett.113.035001

10.1103/PhysRevLett.87.255001

10.1029/95JA03145

10.1029/2007JA012622

10.1029/2000GL012383

10.1063/1.3692234

10.1103/PhysRevE.85.056410

10.1002/2014JA020236

10.1016/0370-1573(89)90109-9

10.1103/PhysRevLett.19.297

10.1007/s00585-999-0631-2

10.1103/PhysRevLett.42.501

10.1029/94JA00718

10.1029/2002JA009815

10.1007/s11214-013-0007-5

10.1029/2000JA900154

10.1029/2010JA016054

10.1103/PhysRevLett.48.1175

10.1029/94JA03193

10.1002/2015GL063370

10.1029/2005GL23079

10.1029/2005GL024532

10.1029/2011JA016486

10.1007/s11214-013-0013-7

10.1016/0032-0633(85)90040-6