Time-dependent density functional theory molecular dynamics simulation of doubly charged uracil in gas phase
Tóm tắt
We use time-dependent density functional theory and Born-Oppenheimer molecular dynamics methods to investigate the fragmentation of doubly ionized uracil in gas phase. Different initial electronic excited states of the dication are obtained by removing electrons from different inner-shell orbitals of the neutral species. We show that shape-equivalent orbitals lead to very different fragmentation patterns revealing the importance of the intramolecular chemical environment. The results are in good agreement with ionion coincidence measurements of uracil collision with 100 keV protons.
Tài liệu tham khảo
S. Braccini, Nucl. Phys. B 172, 8 (2007)
H. Tsujii et al., J. Radiat. Res. 48, A1–A13 (2007)
J. Ward, Prog. Nucleic Acid Res. Mol. Biol. 35, 95 (1988)
J. de Vries et al., Phys. Rev. Lett. 91, 053401 (2003)
B. Liu et al., Phys. Rev. Lett. 97, 133401 (2006)
J. Tabet et al., Phys. Rev. A 81, 012711 (2010)
J.-P. Champeaux et al., J. Phys. B: At. Mol. Opt. Phys. (2011)
F. Ban, K. Rankin, J. Gauld, R. Boyd, Theor. Chem. Acc. 108, 11 (2002)
S. Naumov, C. von Sonntag, Radiat. Res. 169, 355 (2008)
N. Jena, P. C. Mishra, J. Phys. Chem. B. 109, 14205 (2005)
A. Kumar, M. Sevilla, Radiation effects on DNA: theoretical investigations of electron hole and excitation pathways to DNA damage (Springer-Verlag, Berlin, 2008)
X. Li, M. Sevilla, Adv. Quant. Chem. 52, 59 (2007)
R. H. D. Lyngdoh et al., Acc. Chem. Res. 42, 563 (2009)
C. J. Mundy, M. E. Colvin, A. A. Quong, J. Phys. Chem. A 106, 10063 (2002)
Y. Wu, C. Mundy, M. Colvin, R. Car, J. Phys. Chem. A 108, 2922 (2004)
E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)
A. Castro, M. A. L. Marques, J. A. Alonso, G. F. Bertsch, A. Rubio, Eur. Phys. J. D 28, 211 (2004)
I. Tavernelli, U. F. Rohrig, U. Rothlisberger, Mol. Phys. 103, 963 (2005)
G. Avendaño-Franco, B. Piraux, M. Grüning, X. Gonze, Theor. Chem. Acc. 131, 1289 (2012)
I. Tavernelli et al., Chem. Phys. Chem. 9, 2099 (2008)
L. Adoui et al. J. Phys. B: At. Mol. Opt. Phys. (2009)
P. López-Tarifa et al., Phys. Rev. Lett. 107, 023202 (2011)
B. Coupier et al., Eur. Phys. J. D 20, 459 (2002)
J. de Vries et al., J. Phys. B 35, 4373 (2002)
J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlathoelter, Phys. Scr. T 110, 336 (2004)
T. Schlatholter, R. Hoekstra, R. Morgenstern, Int. J. Mass Spectrom. 233, 173 (2004)
P. Moretto-Capelle, A. Le Padellec, Phys. Rev. A 74, 062705 (2006)
N. Troullier, J. L. Martins, Phys. Rev. B 43, 1993 (1991)
A. D. Becke, Phys. Rev. A 38, 3098 (1988)
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988)
R. Car, M. Parrinello, Phys. Rev. Lett. 22, 2471 (1985)
M. P. Gaigeot et al., J. Phys. B: At. Mol. Opt. Phys. 40, 1 (2007)
I. Tavernelli, M. P. Gaigeot, R. Vuilleumier, C. Stia, M. A. Hervé du Penhoat, M. F. Politis, Chem. Phys. Chem. 9, 2099 (2008)
W. Tang, E. Sanville, G. Henkelman, J. Phys.: Comput. Mater. 21, 084204 (2009)
P. Cafarelli et al., AIP Conf. Proc. 1080, 71 (2008)
D. M. P. Holland, A. W. Potts, L. Karlsson, I. L. Zaytseva, A. B. Trofimov, J. Schirmer, Chem. Phys. 353, 47 (2008)
N. L. Doltsinis, D. Marx, J. Theor. Comp. Chem. 1, 319 (2002)
A. J. Cohen, P. Mori-Sánchez, W. Yang, Science 321, 792 (2008)
P. López-Tarifa et al., Angew. Chem. 52, 3160 (2013)