Time-dependent cellular response in the liver and heart in a dietary-induced obese mouse model: the potential role of ER stress and autophagy

Springer Science and Business Media LLC - Tập 55 - Trang 2031-2043 - 2015
Hsiu-Ching Hsu1, Chia-Hsin Liu2, Yi-Chen Tsai2, Sin-Jin Li2, Ching-Yi Chen2, Chun-Han Chu2, Ming-Fong Chen1
1Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
2Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan

Tóm tắt

Both endoplasmic reticulum stress (ER stress) and autophagy are essential for the response of the protein quality control system to cellular stresses. This study investigated the influence of the duration of a high-fat diet (HFD) in mice on tissue-specific cellular responses, specifically with regard to the role of autophagy and ER stress. Male mice aged 6–7 weeks were fed ad libitum with a standard chow diet or with a HFD for 2, 4, 8, or 16 weeks. The HFD progressively increased mean body weight and induced tissue hypertrophy. The expression of PERK was suppressed in the liver after 16 weeks of the HFD and in the heart after 8 weeks of the HFD. Procaspase 12 and its activated form were induced in the liver with the HFD after 2 weeks, but not in the heart over the 16-week period. The activation of hepatic AMPK was elevated following 4 weeks of the HFD, but was inhibited after 16 weeks of the HFD. The ratio of LC3II to LC3I in the liver did not increase except in those mice fed the HFD for 16 weeks. The expression of AMPK and LC3 in the heart did not change over the entire 16 weeks of feeding the HFD. Cleaved PARP was increased in the liver and heart of mice receiving the HFD for 8 weeks. This study provides evidence that a HFD affects the cellular protein quality control processes responsible for metabolic disorder in a tissue- and duration-dependent manner.

Tài liệu tham khảo

Panchal SK, Brown L (2011) Rodent models for metabolic syndrome research. J Biomed Biotechnol. doi:10.1155/2011/351982 Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver disease. J Hepatol 54:795–809. doi:10.1016/j.jhep.2010.11.005 Ren SY, Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 1852:225–231. doi:10.1016/j.bbadis.2014.04.029 Yang L, Zhao D, Ren J, Yang J (2015) Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 1852:209–218. doi:10.1016/j.bbadis.2014.05.006 Pagliassotti MJ (2012) Endoplasmic reticulum stress in nonalcoholic fatty liver disease. Annu Rev Nutr 32:17–33. doi:10.1146/annurev-nutr-071811-150644 Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477 Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. J Mol Cell Cardiol 48:1105–1110. doi:10.1016/j.yjmcc.2009.10.026 González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME et al (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 5:e1179. doi:10.1038/cddis.2014.162 Ceylan-Isik AF, Kandadi MR, Xu XH, Hua YN, Chicco AJ, Ren J et al (2013) Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 63:4–13. doi:10.1016/j.yjmcc.2013.07.002 Cui MX, Yu H, Wang JL, Gao JJ, Li J (2013) Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J Diabetes Res 2013:852754. doi:10.1155/2013/852754 Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B et al (2012) Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS ONE 7:e41836. doi:10.1371/journal.pone.0041836 Littell RC, Henry PR, Ammerman CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231 Jarolim P (2014) Overview of cardiac markers in heart disease. Clin Lab Med 34:1–14. doi:10.1016/j.cll.2013.11.005 Herceg Z, Wang ZQ (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19:5124–5133 Turdi S, Hu N, Ren J (2013) Tauroursodeoxycholic acid mitigates high fat diet-induced cardiomyocyte contractile and intracellular Ca2+ anomalies. Plos One 8. doi:10.1371/journal.pone.0063615 Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209. doi:10.1128/Mcb.23.20.7198-7209.2003 Lakshmanan AP, Harima M, Suzuki K, Soetikno V, Nagata M, Nakamura T et al (2013) The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic-non-obese type 2 diabetic rats: a differential role of unfolded protein response (UPR) signaling proteins. Int J Biochem Cell B 45:438–447. doi:10.1016/j.biocel.2012.09.017 Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C et al (2013) Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 12:158. doi:10.1186/1475-2840-12-158 Rinella ME, Siddiqui MS, Gardikiotes K, Gottstein J, Elias M, Green RM (2011) Dysregulation of the unfolded protein response in db/db mice with diet-induced steatohepatitis. Hepatology 54:1600–1609. doi:10.1002/hep.24553 Galligan JJ, Smathers RL, Shearn CT, Fritz KS, Backos DS, Jiang H et al (2012) Oxidative stress and the ER stress response in a murine model for early-stage alcoholic liver disease. J Toxicol 2012:207594. doi:10.1155/2012/207594 Howarth DL, Lindtner C, Vacaru AM, Sachidanandam R, Tsedensodnom O, Vasilkova T et al (2014) Activating transcription factor 6 is necessary and sufficient for alcoholic Fatty liver disease in zebrafish. PLoS Genet 10:e1004335. doi:10.1371/journal.pgen.1004335 Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q et al (2012) Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 364:115–129. doi:10.1007/s11010-011-1211-9 Ye RS, Jung DY, Jun JY, Li JZ, Luo SZ, Ko HJ et al (2010) Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes 59:6–16. doi:10.2337/Db09-0755 Papackova Z, Dankova H, Palenickova E, Kazdova L, Cahova M (2012) Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol Res 61(Suppl 2):S67–S76 Tan SH, Shui G, Zhou J, Li JJ, Bay BH, Wenk MR et al (2012) Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem 287:14364–14376. doi:10.1074/jbc.M111.294157 Xu XH, Hua YA, Sreejayan N, Zhang YM, Ren J (2013) Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J Mol Cell Biol 5:61–63. doi:10.1093/Jmcb/Mjs055 Guo R, Zhang YM, Turdi S, Ren J (2013) Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Bba Mol Basis Dis 1832:1136–1148. doi:10.1016/j.bbadis.2013.03.013 Targher G, Bertolini L, Rodella S, Tessari R, Zenari L, Lippi G et al (2007) Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 30:2119–2121. doi:10.2337/Dc07-0349 Hamaguchi M, Kojima T, Takeda N, Nagata C, Takeda J, Sarui H et al (2007) Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease. World J Gastroentero 13:1579–1584 Rijzewijk LJ, Jonker JT, van der Meer RW, Lubberink M, de Jong HW, Romijn JA et al (2010) Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol 56:225–233. doi:10.1016/j.jacc.2010.02.049 Bhatia LS, Curzen NP, Calder PC, Byrne CD (2012) Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor? Eur Heart J 33:1190–1200. doi:10.1093/eurheartj/ehr453 Nseir W, Shalata A, Marmor A, Assy N (2011) Mechanisms linking nonalcoholic fatty liver disease with coronary artery disease. Dig Dis Sci 56:3439–3449. doi:10.1007/s10620-011-1767-y Harwood HJ (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63:57–75. doi:10.1016/j.neuropharm.2011.12.010 Sam S, Mallone T (2014) Adipose tissue changes in obesity and the impact on metabolic function. Transl Res 164:284–292. doi:10.1016/j.trsl.2014.05.008 Foster MT, Pagliassotti MJ (2012) Metabolic alterations following visceral fat removal and expansion: beyond anatomic location. Adipocyte 1:192–199. doi:10.4161/adip.21756 Foster MT, Softic S, Caldwell J, Kohli R, de Kloet AD, Seeley RJ (2013) Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiol Rep 1. doi:10.1002/phy2.15 Cherian S, Lopaschuk GD, Carvalho E (2012) Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endoc M 303:E937–E949. doi:10.1152/ajpendo.00061.2012