TiO<sub>2</sub> Photocatalysis: A Historical Overview and Future Prospects

Japanese Journal of Applied Physics - Tập 44 Số 12R - Trang 8269 - 2005
Kazuhito Hashimoto1,2, Hiroshi Irie1, Akira Fujishima3
1Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
3Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan

Tóm tắt

Photocatalysis has recently become a common word and various products using photocatalytic functions have been commercialized. Among many candidates for photocatalysts, TiO2 is almost the only material suitable for industrial use at present and also probably in the future. This is because TiO2 has the most efficient photoactivity, the highest stability and the lowest cost. More significantly, it has been used as a white pigment from ancient times, and thus, its safety to humans and the environment is guaranteed by history. There are two types of photochemical reaction proceeding on a TiO2 surface when irradiated with ultraviolet light. One includes the photo-induced redox reactions of adsorbed substances, and the other is the photo-induced hydrophilic conversion of TiO2 itself. The former type has been known since the early part of the 20th century, but the latter was found only at the end of the century. The combination of these two functions has opened up various novel applications of TiO2, particularly in the field of building materials. Here, we review the progress of the scientific research on TiO2 photocatalysis as well as its industrial applications, and describe future prospects of this field mainly based on the present authors' work.

Từ khóa


Tài liệu tham khảo

1929, Farben-Zeitung., 34, 1242

1938, Trans. Faraday Soc., 34, 902, 10.1039/tf9383400902

1964, Kogyo Kagaku Zasshi, 67, 1136, 10.1246/nikkashi1898.67.8_1136

1969, Kogyo Kagaku Zasshi, 72, 108, 10.1246/nikkashi1898.72.108

1972, Nature, 238, 37, 10.1038/238037a0

1996

1996, J. Phys. Chem., 100, 13061, 10.1021/jp953720e

1999

1998

1999

1993, J. Am. Chem. Soc., 115, 6382, 10.1021/ja00067a063

1997, Chem. Commun., 18, 1705, 10.1039/a703277c

1980, Nature, 286, 474, 10.1038/286474a0

1996, J. Am. Chem. Soc., 118, 6716, 10.1021/ja954172l

1977, J. Am. Chem. Soc., 99, 303, 10.1021/ja00443a081

1993, Chem. Rev., 93, 341, 10.1021/cr00017a016

1987, J. Phys. Chem., 91, 3328, 10.1021/j100296a044

1993

1999

1997, J. Phys. Chem. B, 101, 11000, 10.1021/jp9730095

1999, Langmuir, 15, 3551, 10.1021/la9814440

1995, Acc. Chem. Res., 28, 503, 10.1021/ar00060a006

1998, Environ. Sci. Technol., 32, 726, 10.1021/es970860o

2003, Environ. Sci. Technol., 37, 4785, 10.1021/es034106g

1997, Nature, 388, 431, 10.1038/41233

1998, Adv. Mater., 10, 135, 10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M

2003, J. Phys. Chem. B, 107, 1028, 10.1021/jp022105p

2003, J. Phys. Chem. B, 107, 9029, 10.1021/jp0345046

2003, Langmuir, 19, 7330, 10.1021/la0345542

2005, J. Phys. Chem. B, 109, 15454, 10.1021/jp058101c

2000, Chem. Mater., 12, 3, 10.1021/cm990556p

2001, J. Phys. Chem. B, 105, 1984, 10.1021/jp002525j

1998, Langmuir, 14, 5918, 10.1021/la980623e

2000, Surf. Sci., 463, L609, 10.1016/S0039-6028(00)00635-X

Chem. Commun.

1986

1957, J. Phys. Chem., 61, 904, 10.1021/j150553a013

1970, Ind. Eng. Chem., 62, 54, 10.1021/ie50723a009

J. Phys. Chem. B.

1999, Hyomen Kagaku, 20, 27, 10.1380/jsssj.20.85

2001, Langmuir, 17, 2298, 10.1021/la0016118

2004, J. Phys. Chem. B, 108, 19086, 10.1021/jp045173f

2001, J. Phys. Chem. B, 105, 3023, 10.1021/jp003212r

1999

1999, J. Phys. Chem. B, 103, 2188, 10.1021/jp983386x

1999, Electrochemistry, 67, 1234, 10.5796/electrochemistry.67.1234

2000, J. Phys. Chem. B, 104, 4873, 10.1021/jp993285e

2001, Photocatalysis, 4, 45

2003, J. Phys. Chem. B, 107, 10696, 10.1021/jp0357830

2000, Adv. Mater., 12, 1923, 10.1002/1521-4095(200012)12:24<1923::AID-ADMA1923>3.0.CO;2-#

1982, J. Am. Chem. Soc., 104, 2996, 10.1021/ja00375a010

1999, J. Synchrotron Radiat., 6, 451, 10.1107/S0909049598017257

2000, J. Mol. Catal., 161, 205, 10.1016/S1381-1169(00)00362-9

2001, Photocatalysis, 4, 51

2001, Photocatalysis, 5, 19

2001, Science, 293, 269, 10.1126/science.1061051

2003, J. Phys. Chem. B, 107, 5483, 10.1021/jp030133h

2003, Chem. Commun., 11, 1298, 10.1039/b302975a

2003, Chem. Phys. Chem., 4, 487, 10.1002/cphc.200200554

1986, Chem. Phys. Lett., 123, 126, 10.1016/0009-2614(86)87026-9

2005, J. Electrochem. Soc., 152, E351, 10.1149/1.2048227

2002, Appl. Phys. Lett., 81, 454, 10.1063/1.1493647

2003, Chem. Lett., 32, 330, 10.1246/cl.2003.330

2003, Chem. Lett., 32, 364, 10.1246/cl.2003.364

2003, Chem. Lett., 32, 772, 10.1246/cl.2003.772

2004, Photocatalysis, 15, 78

1949, J. Phys. Colloid Chem., 53, 1466, 10.1021/j150474a015

1948, Discuss. Faraday Soc., 3, 11, 10.1039/df9480300011

2005, Electrochem. Solid-State Lett., 8, D23, 10.1149/1.1979455

2001, Monatsh. Chem., 132, 31, 10.1007/s007060170142

1999, Adv. Mater., 11, 1365, 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F

2000, Thin Solid Films, 376, 140, 10.1016/S0040-6090(00)01417-6

2000, Langmuir, 16, 7044, 10.1021/la000155k

1993, Jpn. J. Appl. Phys., 32, L614, 10.1143/JJAP.32.L614

1997, J. Am. Ceram. Soc., 80, 1040, 10.1111/j.1151-2916.1997.tb02943.x

1997, J. Am. Ceram. Soc., 80, 3213, 10.1111/j.1151-2916.1997.tb03253.x

1997, Thin Solid Films, 303, 222, 10.1016/S0040-6090(97)00076-X

1997, Thin Solid Films, 334, 54, 10.1016/S0040-6090(98)01116-X