Thuật toán giải bài toán bất đẳng thức biến phân trên tập nghiệm của bài toán bất đẳng thức biến phân và điểm bất động tách
Tóm tắt
Từ khóa
#Variational inequality #split variational inequality and fixed point problem #pseudomonotone mapping #demicontractive mappingTài liệu tham khảo
Anh P.K., Anh T.V. and Muu, L.D., On bilevel split pseudomonotone variational inequality problems with applications. Acta Math, Vietnam. 42, 413-429 (2017)
Anh T.V., An extragradient method for finding minimum-norm solution of the split equilibrium problem. Acta Math. Vietnam. 42, 587-604 (2017).
Anh T.V., A parallel method for variational inequalities with the multiplesets split feasibility problem constraints. J. Fixed Point Theory Appl. 19, 2681-2696 (2017).
Anh T.V., Linesearch methods for bilevel split pseudomonotone variational inequality problems. Numer. Algorithms 81, 1067-1087 (2019).
Anh T.V. and Muu L.D., A projection-fixed point method for a class of
bilevel variational inequalities with split fixed point constraints. Optimization 65, 1229-1243 (2016).
Buong N., Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms 76, 783-798 (2017).
Byrne C., Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441-453 (2002).
Byrne C., Censor Y., Gibali A. and Reich S., The split common
null point problem. J. Nonlinear Convex Anal. 13, 759-775 (2012).
Ceng L.C., Ansari Q.H. and Yao J.C., Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 75, 2116-2125 (2012).
Censor Y., Bortfeld T., Martin B. and Trofimov A., A unifiedapproach for inversion problems in intensity-modulated radiation therapy.Phys. Med. Biol. 51, 2353-2365 (2006).
Censor Y. and Elfving T., A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221-239 (1994).
Censor Y., Elfving T., Kopf N. and Bortfeld T., The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. 21, 2071-2084 (2005).
Censor Y. and Segal A., Iterative projection methods in biomedical inverse problems, in: Y. Censor, M. Jiang, A.K. Louis (Eds.), Mathematical Methods in Biomedical Imaging and Intensity-Modulated Therapy, IMRT, Edizioni della Norale, Pisa, Italy, 2008, pp. 65-96.
Hai N.M., Van L.H.M. and Anh T.V., An Algorithm for a Class ofBilevel Variational Inequalities with Split Variational Inequality and Fixed Point Problem Constraints. Acta Math. Vietnam. 46, 515–530 (2021).
Huy P.V., Hien N.D. and Anh T.V., A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem. Vietnam J. Math. 48, 187-204 (2020).
Huy P.V., Van L.H.M., Hien N.D. and Anh T.V., Modified Tseng’s extragradient methods with self-adaptive step size for solving bilevel split variational inequality problems. Optimization 71, 1721-1748 (2022).
Konnov I.V., Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000).
Liu B., Qu B. and Zheng N., A Successive Projection Algorithm for Solving the Multiple-Sets Split Feasibility Problem. Numer. Funct. Anal. Optim. 35, 1459-1466 (2014).
Maing´e P.E., A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499-1515
(2008).
Tseng P., A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000).
Wen M., Peng J.G. and Tang Y.C., A cyclic and simultaneous iterative method for solving the multiple-sets split feasibility problem. J. Optim. Theory Appl. 166(3), 844-860 (2015).
Xu H.K., Iterative algorithms for nonlinear operators. J. London Math. Soc. 66, 240–256 (2002).
Zhao J.L. and Yang Q.Z., A simple projection method for solving the multiple-sets split feasibility problem. Inverse Probl. Sci. Eng. 21, 537-546 (2013).
Zhao J.L., Zhang Y.J. and Yang Q.Z., Modified projection methods for the split feasibility problem and the multiple-sets split feasibility problem. Appl. Math. Comput. 219, 1644-1653 (2012). Tran Viet Anh
