Thrombophilia in East Asian countries: are there any genetic differences in these countries?

Thrombosis Journal - Tập 14 - Trang 123-128 - 2016
Toshiyuki Miyata, Keiko Maruyama1, Fumiaki Banno2, Reiko Neki3,4
1Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
2Department of Food and Nutrition, Koriyama Women’s University, Koriyama, Japan
3Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
4Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Japan

Tóm tắt

In recent years, genetic analyses of congenital deficiencies of three anticoagulant proteins, antithrombin, protein C (PC) and protein S (PS), in East Asian patients with venous thromboembolism (VTE) have greatly increased. The PS-K196E mutation is often identified in the Japanese population with an allelic frequency of 0.86 %, and a total of approximately 10,000 Japanese are estimated to be homozygotes. The heterozygotes show PS anticoagulant activities ranging from 40 to 110 %, and 16 % lower mean anticoagulant activity than that in wild-type individuals. Specific assay methods to identify carriers of this mutation have recently been developed. The mutation carriers are at risk of thrombosis during pregnancy but do not appear to be at risk for adverse pregnancy outcomes. To promote future research into this mutation and its relation to thrombosis, a thrombosis-prone mouse strain with the PS K196E mutation has been developed. We found the PS-K196E mutation and the heterozygous PS-deficiency in mice caused increased VTE, but did not cause aggravation of ischemic stroke, unlike factor V Leiden mutation. Importantly, the PS-K196E mutation is only identified in Japanese. This suggests that although East Asian populations including Japanese, Chinese, and Koreans are geographically and genetically close, the PS-K196E mutation seems to be Japanese-specific, suggesting that the mutation is a recent occurrence and fixed within the Japanese population. Some recurrent genetic mutations predisposing to VTE have been reported in Chinese and Korean populations. Although the genetic background for VTE is known to differ between populations with Caucasian descent and East Asian populations, some of the recurrent mutations differ even within the East Asian populations.

Tài liệu tham khảo

Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994;369(6475):64–7. doi:10.1038/369064a0.

Kimura R, Honda S, Kawasaki T, et al. Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood. 2006;107(4):1737–8. doi:10.1182/blood-2005-09-3892.

Miyata T, Kimura R, Kokubo Y, et al. Genetic risk factors for deep vein thrombosis among Japanese: importance of protein S K196E mutation. Int J Hematol. 2006;83(3):217–23. doi:10.1532/IJH97.A20514.

Kimura R, Sakata T, Kokubo Y, et al. Plasma protein S activity correlates with protein S genotype but is not sensitive to identify K196E mutant carriers. J Thromb Haemost. 2006;4(9):2010–3. doi:10.1111/j.1538-7836.2006.02071.x.

Kinoshita S, Iida H, Inoue S, et al. Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. Clin Biochem. 2005;38(10):908–15. doi:10.1016/j.clinbiochem.2005.05.006.

Ikejiri M, Wada H, Sakamoto Y, et al. The association of protein S Tokushima-K196E with a risk of deep vein thrombosis. Int J Hematol. 2010;92(2):302–5. doi:10.1007/s12185-010-0671-0.

Consortium TGP. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73. doi:10.1038/nature09534.

Liu W, Yin T, Okuda H, et al. Protein S K196E mutation, a genetic risk factor for venous thromboembolism, is limited to Japanese. Thromb Res. 2013;132(2):314–5. doi:10.1016/j.thromres.2013.05.008.

Tang L, Jian XR, Hamasaki N, et al. Molecular basis of protein S deficiency in China. Am J Hematol. 2013;88(10):899–905. doi:10.1002/ajh.23525.

Kim HJ, Seo JY, Lee KO, et al. Distinct frequencies and mutation spectrums of genetic thrombophilia in Korea in comparison with other Asian countries both in patients with thromboembolism and in the general population. Haematologica. 2014;99(3):561–9. doi:10.3324/haematol.2013.092023.

Rodger MA, Langlois NJ. Is thrombophilia associated with placenta-mediated pregnancy complications? A prospective cohort study: reply. J Thromb Haemost. 2014;12(8):1378–9. doi:10.1111/jth.12632.

Maruyama K, Akiyama M, Kokame K, et al. ELISA-based detection system for protein S K196E mutation, a genetic risk factor for venous thromboembolism. PLoS One. 2015;10(7):e0133196. doi:10.1371/journal.pone.0133196.

Tsuda T, Jin X, Tsuda H, et al. New quantitative total protein S-assay system for diagnosing protein S type II deficiency: clinical application of the screening system for protein S type II deficiency. Blood Coagul Fibrinolysis. 2012;23(1):56–63. doi:10.1097/MBC.0b013e32834ddefd.

MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469–76. doi:10.1038/nature13127.

Kita T, Banno F, Yanamoto H, et al. Large infarct and high mortality by cerebral ischemia in mice carrying the factor V Leiden mutation. J Thromb Haemost. 2012;10(7):1453–5. doi:10.1111/j.1538-7836.2012.04776.x.

Tsay W, Shen MC. R147W mutation of PROC gene is common in venous thrombotic patients in Taiwanese Chinese. Am J Hematol. 2004;76(1):8–13. doi:10.1002/ajh.20043.

Tang L, Guo T, Yang R, et al. Genetic background analysis of protein C deficiency demonstrates a recurrent mutation associated with venous thrombosis in Chinese population. PLoS One. 2012;7(4):e35773. doi:10.1371/journal.pone.0035773.

Tang L, Lu X, Yu JM, et al. PROC c.574_576del polymorphism: a common genetic risk factor for venous thrombosis in the Chinese population. J Thromb Haemost. 2012;10(10):2019–26. doi:10.1111/j.1538-7836.2012.04862.x.

Ding Q, Yang L, Hassanian SM, et al. Expression and functional characterisation of natural R147W and K150del variants of protein C in the Chinese population. Thromb Haemost. 2013;109(4):614–24. doi:10.1160/TH12-10-0760.

Miyata T, Sakata T, Yasumuro Y, et al. Genetic analysis of protein C deficiency in nineteen Japanese families: five recurrent defects can explain half of the deficiencies. Thromb Res. 1998;92(4):181–7.

Mitsuguro M, Sakata T, Okamoto A, et al. Usefulness of antithrombin deficiency phenotypes for risk assessment of venous thromboembolism: type I deficiency as a strong risk factor for venous thromboembolism. Int J Hematol. 2010;92(3):468–73. doi:10.1007/s12185-010-0687-5.