Three‐dimensional structure of a fluorescein–Fab complex crystallized in 2‐methyl‐2,4‐pentanediol

Proteins: Structure, Function and Bioinformatics - Tập 5 Số 4 - Trang 271-280 - 1989
James N. Herron1, Xiaomin He2, Martha L. Mason2, Edward W. Voss3, Allen B. Edmundson2
1Department of Biology, University of Utah Salt Lake City 84112.
2Department of Biology, University of Utah, Salt Lake City, Utah 84112
3Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois 61081

Tóm tắt

AbstractThe crystal structure of a fluorescein–Fab (4‐4‐20) complex was determined at 2.7 Å resolution by molecularreplacement methods. The starting model was the refined 2.7 Å structure of unliganded Fab from an autoantibody (BV04‐01) with specificity for single‐stranded DNA. In the 4‐4‐20 complex fluorescein fits tightly into a relatively deep slot formed by a network of tryptophan and tyrosine side chains. The planar xanthonyl ring of the hapten is accommodated at the bottom of the slot while the phenylcarboxyl group interfaces with solvent. Tyrosine 37 (light chain) and tryptophan 33 (heavy chain) flank the xanthonyl group and tryptophan 101 (light chain) provides the floor of the combining site. Tyrosine 103 (heavy chain) is situated near the phenyl ring of the hapten and tyrosine 102 (heavy chain) forms part of the boundary of the slot. Histidine 31 and arginine 39 of the light chain are located in positions adjacent to the two enolic groups at opposite ends of the xanthonyl ring, and thus account for neutralization of one of two negative charges in the haptenic dianion. Formation of an enol‐arginine ion pair in a region of low dielectric constant may account for an incremental increase in affinity of 2‐3 orders of magnitude in the 4‐4‐20 molecules relative to other members of an idiotypic family of monoclonalantifluorescyl antibodies. The phenyl carboxyl group of fluorescein appearsto be hydrogen bonded to the phenolic hydroxyl group of tyrosine 37 of the light chain. A molecule of 2‐methyl‐2,4‐pentanediol (MPD), trapped in the interface of the variable domainsjust below the fluorescein binding site, may be partly responsible for the decrease in affinity for the hapten in MPD.

Từ khóa


Tài liệu tham khảo

10.1016/0161-5890(81)90012-2

Kranz D. M., 1982, Ligand binding by monoclonal anti‐fluorescyl antibodies, J. Biol. Chem., 257, 6987, 10.1016/S0021-9258(18)34527-7

Herron J. N., 1984, Fluorescein Hapten: An Immunological Probe, 49

10.1021/bi00364a022

10.1002/prot.340030304

10.1016/0019-2791(76)90382-7

10.1016/0161-5890(83)90161-X

10.1016/0161-5890(83)90162-1

10.1016/0161-5890(85)90072-0

10.1073/pnas.71.4.1427

10.1073/pnas.71.11.4298

10.1021/bi00715a031

10.1016/0161-5890(84)90041-5

10.1016/0161-5890(85)90131-2

10.1016/0161-5890(87)90003-4

10.1126/science.2426778

10.1073/pnas.84.22.8075

10.1016/0022-2836(86)90294-9

10.1038/326358a0

10.1002/bies.950080206

Cygler M., 1987, Crystallization and structure determination of an autoimmune antipoly (dT) immunoglobulin Fab fragment at 3.0 Å resolution, J. Biol. Chem., 262, 643, 10.1016/S0021-9258(19)75832-3

Herron J. N., 1987, Crystal structure of murine Fab fragment with specificity for single‐stranded DNA, Fed. Proc., 46, 2204

Edmundson A. B. Herron J. N. Ely K. R. He X.‐M. Harris D. L. Voss E. W. Jr.Synthetic site‐directed ligands.Phil. Trans. Roy. Soc. Ser. B. in press.

10.1002/prot.340010112

10.1126/science.3140379

10.1016/0161-5890(85)90135-X

10.1107/S0365110X62000067

Crowther R. A., 1972, The Molecular Replacement Method: A Collection of Papers on the Use of Non‐crystallographic Symmetry, 173

10.1107/S0567740870004995

10.1107/S0021889887012299

10.1107/S0021889883010134

Hendrickson W. A., 1985, Methods in Enzymology, 252

Herron J. N. He X.‐M. Voss E. W. Jr. Edmundson A. B.Structure of the Fab of an anti‐ss‐DNA autoantibody. Abstr.Protein Soc.S201 1988.

Bedzyk W. D., 1989, Variable region primary structure of a high affinity monoclonal anti‐fluorescein antibody, J. Biol. Chem., 264, 1565, 10.1016/S0021-9258(18)94224-9

10.1107/S0021889878013308

Pflugrath J. W., 1984, Methods and Applications in Crystallographic Computing, 404

10.1126/science.6879170

10.1126/science.3892686

10.1016/0161-5890(88)90111-3

10.1016/0019-2791(77)90308-1

Bedzyk W. K., 1989, Variable region primary structures of idiotypically cross‐reactive anti‐fluorescein monoclonal antibodies, FASEB J. ABS., 3, A1096

Kranz D. M., 1981, Kinetics and mechanism of fluorescence enhancement due to deuterium oxide perturbation of fluorescyl ligand bound to purified homogeneous and heterogeneous antibodies, J. Biol. Chem., 256, 4433, 10.1016/S0021-9258(19)69452-4

Watt R. M., 1979, Solvent perturbation of the fluorescence of fluorescein bound to specific antibody. Fluorescence quenching of the bound fluorophore by iodide, J. Biol. Chem., 254, 1684, 10.1016/S0021-9258(17)37827-4

10.1016/0161-5890(80)90004-8

Kabat E. A. Wu T. T. Reid‐Miller M. Perry H. M. Gottesman K. S.“Sequences of Proteins of Immunological Interest.” U. S. Department of Health and Human Services. Public Health Service National Institutes of Health Bethesda MD 1987.