Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage

American Association for the Advancement of Science (AAAS) - Tập 356 Số 6338 - Trang 599-604 - 2017
Hongtao Sun1, Lin Mei1,2, Junfei Liang3, Zipeng Zhao3, Chain Lee1, Huilong Fei1, Mengning Ding4,3, Jonathan Lau3, Mufan Li1, Chen Wang3, Xu Xu1, Guolin Hao1, Benjamin Papandrea1, Imran Shakir5, Bruce Dunn4,3, Yu Huang4,3, Xiangfeng Duan4,1
1Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
2State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
3Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
4California NANOSystems Institute, University of California, Los Angeles, CA 90095, USA.
5Sustainable Energy Technologies Centre, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia.

Tóm tắt

As with donuts, the holes matter Improving the density of stored charge and increasing the speed at which it can move through a material are usually opposing objectives. Sun et al. developed a Nb 2 O 5 /holey graphene framework composite with tailored porosity. The three-dimensional, hierarchically porous holey graphene acted as a conductive scaffold to support Nb 2 O 5 . A high mass loading and improved power capability were reached by tailoring the porosity in the holey graphene backbone with higher charge transport in the composite architecture. The interconnected graphene network provided excellent electron transport, and the hierarchical porous structure in the graphene sheets facilitated rapid ion transport and mitigated diffusion limitations. Science , this issue p. 599

Từ khóa


Tài liệu tham khảo

10.1126/science.1122152

10.1126/science.1198591

10.1038/nmat2297

10.1038/nmat1368

10.1038/35035045

10.1007/s12274-014-0638-1

10.1007/s12274-015-0838-3

10.1038/ncomms5526

10.1038/ncomms5565

10.1021/ja102267j

10.1021/nn501783n

10.1021/jp408021m

10.1038/nenergy.2016.50

10.1039/c3ee40509e

10.1038/nnano.2012.35

10.1038/nnano.2014.6

10.1038/nenergy.2015.29

10.1126/science.1213003

10.1149/2.0321602jes

10.1016/S0378-7753(00)00458-4

10.1149/2.0401507jes

10.1038/ncomms5554

10.1021/acs.nanolett.5b01212

10.1038/nmat3601

10.1038/nenergy.2016.70

10.1021/acsnano.5b02601

10.1021/nn501972w

10.1021/acsnano.5b04737

10.1149/2.040405jes

10.1002/adma.201304137

10.1126/science.1132195

10.1002/adma.201000732

10.1021/nl8034256

10.1103/PhysRev.56.978

10.1021/jp512564f

10.1149/2.057207jes

10.1021/nn101968p

10.1021/nl802558y

10.1149/1.1543948

10.1039/c3ta12149f

10.1038/nenergy.2016.97

10.1016/j.nanoen.2014.11.020

10.1021/nl901670t

10.1038/ncomms5105

10.1002/aenm.201100494

10.1038/srep08326

10.1039/C4RA06674J