Three-dimensional Hybrid Continuum-Atomistic Simulations For Multiscale Hydrodynamics

Journal of Fluids Engineering, Transactions of the ASME - Tập 126 Số 5 - Trang 768-777 - 2004
H. S. Wijesinghe1, Richard D. Hornung2, Alejandro L. Garcia3, Nicolas G. Hadjiconstantinou1
1Massachusetts Institute of Technology, Cambridge, MA
2Lawrence Livermore National Laboratory, Livermore, CA
3San Jose State University, San Jose, CA

Tóm tắt

We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such “hybrid” methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.

Từ khóa


Tài liệu tham khảo

Abraham, F. F., Broughton, J. Q., Bernstein, N., and Kaxiras, E., 1998, “Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture,” Europhys. Lett., 44, pp. 783–787.

Rudd, R. E., and Broughton, J. Q., 2000, “Concurrent coupling of length scales in solid state systems,” Phys. Status Solidi B, 217, pp. 251–291.

Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M., 1999, “An Adaptive Finite Element Approach to Atomic-Scale Mechanics—The Quasicontinuum Method,” J. Mech. Phys. Solids, 47, pp. 611–642.

O’Connell, S. T., and Thompson, P. A., 1995, “Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows,” Phys. Rev. E, 52, pp. R5792–R5795R5792–R5795.

Hadjiconstantinou, N. G. , 1999, “Hybrid Atomistic-Continuum Formulations and the Moving Contact-Line Problem,” J. Comput. Phys., 154, pp. 245–265.

Li, J., Liao, D., and Yip, S., 1998, “Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator,” Phys. Rev. E, 57, pp. 7259–7267.

Flekkoy, E. G., Wagner, G., and Feder, J., 2000, “Hybrid model for combined particle and continuum dynamics,” Europhys. Lett., 52, pp. 271–276.

Wadsworth, D. C., and Erwin, D. A., 1990, “One-Dimensional Hybrid Continuum/Particle Simulation Approach for Rarefied Hypersonic Flows,” AIAA Paper 90-1690.

Hash, D., and Hassan, H., 1996, “A Decoupled DSMC/Navier-Stokes Analysis of a Transitional Flow Experiment,” AIAA Paper 96-0353.

Bourgat, J., Le Tallec, P., and Tidriri, M., 1996, “Coupling Boltzmann and Navier-Stokes Equations by Friction,” J. Comput. Phys., 127, pp. 227–245.

Alder, B. J. , 1997, “Highly discretized dynamics,” Physica A, 240, pp. 193–195.

Le Tallec, P., and Mallinger, F., 1997, “Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes,” J. Comput. Phys., 136, pp. 51–67.

Tiwari, S., and Klar, A., 1998, “Coupling of the Boltzmann and Euler equations with adaptive domain decomposition procedure,” J. Comput. Phys., 144, pp. 710–726.

Garcia, A. L., Bell, J., Crutchfield, W. Y., and Alder, B. J., 1999, “Adaptive Mesh and Algorithm Refinement using Direct Simulation Monte Carlo,” J. Comput. Phys., 154, pp. 134–155.

Aktas, O., and Aluru, N. R., 2002, “A Combined Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters,” J. Comput. Phys., 178, pp. 342–372.

Roveda, R., Goldstein, D. B., and Varghese, P. L., 2000, “Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow,” J. Spacecr. Rockets, 37(6), pp. 753–760.

Hornung, R. D., and Kohn, S. R., 2002, “Managing Application Complexity in the SAMRAI Object-Oriented Framework,” Concurrency and Computation: Practice and Experience, 14, pp. 347–368.

Quarteroni, A., 1999, Domain decomposition methods for partial differential equations, Oxford, New York; Clarendon Press, Oxford, New York.

Berger, M., and Oliger, J., 1984, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” J. Comput. Phys., 53, pp. 484–512.

Berger, M., and Colella, P., 1989, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys., 82, pp. 64–84.

Colella, P. , 1985, “A Direct Eulerian MUSCL Scheme for Gas Dynamics,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 6, pp. 104–117.

Colella, P., and Glaz, H. M., 1985, “Efficient Solution Algorithms for the Riemann Problem for Real Gases,” J. Comput. Phys., 59, pp. 264–289.

Saltzman, J. , 1994, “An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws,” J. Comput. Phys., 115, pp. 153–167.

Hadjiconstantinou, N. G., and Simek, O., 2002, “Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels,” J. Heat Transfer, 124, pp. 356–364.

Hadjiconstantinou, N. G. , 2002, “Sound wave propagation in transition-regime micro- and nanochannels,” Phys. Fluids, 14, pp. 802–809.

Hadjiconstantinou, N. G. , 2003, “Comment on Cercignani’s second-order slip coefficient,” Phys. Fluids, 15, pp. 2352–2354.

Hadjiconstantinou, N. G., and Simek, O., 2003, “Sound propagation at small scales under continuum and non-continuum transport,” J. Fluid Mech., 488, pp. 399–408.

Zheng, Y., Garcia, A. L., and Alder, B. J., 2002, “Comparison of kinetic theory and hydrodynamics for Poiseuille Flow,” J. Stat. Phys., 109, pp. 495–505.

Bird, G. A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford.

Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon, Oxford.

Garcia, A. L., and Wagner, W., 2000, “Time step truncation error in direct simulation Monte Carlo,” Phys. Fluids, 12, pp. 2621–2633.

Hadjiconstantinou, N. G. , 2000, “Analysis of Discretization in the Direct Simulation Monte Carlo,” Phys. Fluids, 12, pp. 2634–2638.

Wagner, W. , 1992, “A Convergence Proof for Bird’s Direct Simulation Monte Carlo Method for the Boltzmann Equation,” J. Stat. Phys., 66, pp. 1011–1044.

Garcia, A. L., and Alder, B. J., 1998, “Generation of the Chapman-Enskog Distribution,” J. Comput. Phys., 140, pp. 66–70.

Bird, G. A. , 1970, “Breakdown of Translational and Rotational Equilibrium in Gaseous Expansions,” Am. Inst. Aeronaut. Astronaut. J., 8, p. 19981998.

Trangenstein, J. A., and Pember, R. B., 1992, “Numerical Algorithms for Strong Discontinuities in Elastic-Plastic Solids,” J. Comput. Phys., 103, pp. 63–89.

Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z., and He, G., 2003, “Statistical error in particle simulations of Hydrodynamic Phenomena,” J. Comput. Phys., 187, pp. 274–297.

Alexander, F., Garcia, A. L., and Tartakovsky, D., 2002, “Algorithm Refinement for Stochastic Partial Diffential Equations: I. Linear Diffusion,” J. Comput. Phys., 182(1), pp. 47–66.

Hirschfelder, J. O., Curtiss, C. F., and Bird, B., 1964, Molecular theory of gases and liquids, Wiley, New York.

Schmidt, B., and Worner, M., 1983, “Problems with the Computation of the Shock Structure in Binary Gas Mixtures Using the Direct Simulation Monte Carlo Method,” Acta Mech., 1–4, pp. 59–55.

Arora, M., and Roe, P. L., 1997, “On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows,” J. Comput. Phys., 130, pp. 25–40.

Woodward, P. R., and Colella, P., 1984, “The Numerical Simulation of Two-dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys., 54, pp. 115–173.

Meshkov, E. E. , 1969, “Instability of the Interface of two Gases Accelerated by a Shock Wave,” Fluid Dyn., 43(5), pp. 101–104.

Meshkov, E. E., 1970, “Instability of a Shock Wave Accelerated Interface between two Gases,” NASA Tech. Trans., F-13074.

Richtmyer, R. D. , 1960, “Taylor Instability in Shock Acceleration of Compressible Fluids,” Commun. Pure Appl. Math., 13, pp. 297–319.

Brouillette, M. , 2002, “The Richtmyer-Meshkov Instability,” Ann. Rev. Fluid Mech., 34, pp. 445–468.

Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schneider, M., Sharp, D. H., Velikovich, A. L., Weaver, R. P., and Zhang, Q., 1999, “Richtmyer-Meshkov Instability Growth: Experiment, Simulation and Theory,” J. Fluid Mech., 389, pp. 55–79.