Three-dimensional Hybrid Continuum-Atomistic Simulations For Multiscale Hydrodynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abraham, F. F., Broughton, J. Q., Bernstein, N., and Kaxiras, E., 1998, “Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture,” Europhys. Lett., 44, pp. 783–787.
Rudd, R. E., and Broughton, J. Q., 2000, “Concurrent coupling of length scales in solid state systems,” Phys. Status Solidi B, 217, pp. 251–291.
Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M., 1999, “An Adaptive Finite Element Approach to Atomic-Scale Mechanics—The Quasicontinuum Method,” J. Mech. Phys. Solids, 47, pp. 611–642.
O’Connell, S. T., and Thompson, P. A., 1995, “Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows,” Phys. Rev. E, 52, pp. R5792–R5795R5792–R5795.
Hadjiconstantinou, N. G. , 1999, “Hybrid Atomistic-Continuum Formulations and the Moving Contact-Line Problem,” J. Comput. Phys., 154, pp. 245–265.
Li, J., Liao, D., and Yip, S., 1998, “Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator,” Phys. Rev. E, 57, pp. 7259–7267.
Flekkoy, E. G., Wagner, G., and Feder, J., 2000, “Hybrid model for combined particle and continuum dynamics,” Europhys. Lett., 52, pp. 271–276.
Wadsworth, D. C., and Erwin, D. A., 1990, “One-Dimensional Hybrid Continuum/Particle Simulation Approach for Rarefied Hypersonic Flows,” AIAA Paper 90-1690.
Hash, D., and Hassan, H., 1996, “A Decoupled DSMC/Navier-Stokes Analysis of a Transitional Flow Experiment,” AIAA Paper 96-0353.
Bourgat, J., Le Tallec, P., and Tidriri, M., 1996, “Coupling Boltzmann and Navier-Stokes Equations by Friction,” J. Comput. Phys., 127, pp. 227–245.
Le Tallec, P., and Mallinger, F., 1997, “Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes,” J. Comput. Phys., 136, pp. 51–67.
Tiwari, S., and Klar, A., 1998, “Coupling of the Boltzmann and Euler equations with adaptive domain decomposition procedure,” J. Comput. Phys., 144, pp. 710–726.
Garcia, A. L., Bell, J., Crutchfield, W. Y., and Alder, B. J., 1999, “Adaptive Mesh and Algorithm Refinement using Direct Simulation Monte Carlo,” J. Comput. Phys., 154, pp. 134–155.
Aktas, O., and Aluru, N. R., 2002, “A Combined Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters,” J. Comput. Phys., 178, pp. 342–372.
Roveda, R., Goldstein, D. B., and Varghese, P. L., 2000, “Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow,” J. Spacecr. Rockets, 37(6), pp. 753–760.
Hornung, R. D., and Kohn, S. R., 2002, “Managing Application Complexity in the SAMRAI Object-Oriented Framework,” Concurrency and Computation: Practice and Experience, 14, pp. 347–368.
Quarteroni, A., 1999, Domain decomposition methods for partial differential equations, Oxford, New York; Clarendon Press, Oxford, New York.
Berger, M., and Oliger, J., 1984, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” J. Comput. Phys., 53, pp. 484–512.
Berger, M., and Colella, P., 1989, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys., 82, pp. 64–84.
Colella, P. , 1985, “A Direct Eulerian MUSCL Scheme for Gas Dynamics,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 6, pp. 104–117.
Colella, P., and Glaz, H. M., 1985, “Efficient Solution Algorithms for the Riemann Problem for Real Gases,” J. Comput. Phys., 59, pp. 264–289.
Saltzman, J. , 1994, “An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws,” J. Comput. Phys., 115, pp. 153–167.
Hadjiconstantinou, N. G., and Simek, O., 2002, “Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels,” J. Heat Transfer, 124, pp. 356–364.
Hadjiconstantinou, N. G. , 2002, “Sound wave propagation in transition-regime micro- and nanochannels,” Phys. Fluids, 14, pp. 802–809.
Hadjiconstantinou, N. G. , 2003, “Comment on Cercignani’s second-order slip coefficient,” Phys. Fluids, 15, pp. 2352–2354.
Hadjiconstantinou, N. G., and Simek, O., 2003, “Sound propagation at small scales under continuum and non-continuum transport,” J. Fluid Mech., 488, pp. 399–408.
Zheng, Y., Garcia, A. L., and Alder, B. J., 2002, “Comparison of kinetic theory and hydrodynamics for Poiseuille Flow,” J. Stat. Phys., 109, pp. 495–505.
Bird, G. A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon, Oxford.
Garcia, A. L., and Wagner, W., 2000, “Time step truncation error in direct simulation Monte Carlo,” Phys. Fluids, 12, pp. 2621–2633.
Hadjiconstantinou, N. G. , 2000, “Analysis of Discretization in the Direct Simulation Monte Carlo,” Phys. Fluids, 12, pp. 2634–2638.
Wagner, W. , 1992, “A Convergence Proof for Bird’s Direct Simulation Monte Carlo Method for the Boltzmann Equation,” J. Stat. Phys., 66, pp. 1011–1044.
Garcia, A. L., and Alder, B. J., 1998, “Generation of the Chapman-Enskog Distribution,” J. Comput. Phys., 140, pp. 66–70.
Bird, G. A. , 1970, “Breakdown of Translational and Rotational Equilibrium in Gaseous Expansions,” Am. Inst. Aeronaut. Astronaut. J., 8, p. 19981998.
Trangenstein, J. A., and Pember, R. B., 1992, “Numerical Algorithms for Strong Discontinuities in Elastic-Plastic Solids,” J. Comput. Phys., 103, pp. 63–89.
Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z., and He, G., 2003, “Statistical error in particle simulations of Hydrodynamic Phenomena,” J. Comput. Phys., 187, pp. 274–297.
Alexander, F., Garcia, A. L., and Tartakovsky, D., 2002, “Algorithm Refinement for Stochastic Partial Diffential Equations: I. Linear Diffusion,” J. Comput. Phys., 182(1), pp. 47–66.
Hirschfelder, J. O., Curtiss, C. F., and Bird, B., 1964, Molecular theory of gases and liquids, Wiley, New York.
Schmidt, B., and Worner, M., 1983, “Problems with the Computation of the Shock Structure in Binary Gas Mixtures Using the Direct Simulation Monte Carlo Method,” Acta Mech., 1–4, pp. 59–55.
Arora, M., and Roe, P. L., 1997, “On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows,” J. Comput. Phys., 130, pp. 25–40.
Woodward, P. R., and Colella, P., 1984, “The Numerical Simulation of Two-dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys., 54, pp. 115–173.
Meshkov, E. E. , 1969, “Instability of the Interface of two Gases Accelerated by a Shock Wave,” Fluid Dyn., 43(5), pp. 101–104.
Meshkov, E. E., 1970, “Instability of a Shock Wave Accelerated Interface between two Gases,” NASA Tech. Trans., F-13074.
Richtmyer, R. D. , 1960, “Taylor Instability in Shock Acceleration of Compressible Fluids,” Commun. Pure Appl. Math., 13, pp. 297–319.
Brouillette, M. , 2002, “The Richtmyer-Meshkov Instability,” Ann. Rev. Fluid Mech., 34, pp. 445–468.