Three‐Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics

Vadose Zone Journal - Tập 10 Số 1 - Trang 412-424 - 2011
Sarah Garré1, Mathieu Javaux2,1, Jan Vanderborght1, Loïc Pagès3, Harry Vereecken1
1Forschungszentrum Jülich GmbH Agrosphere (IBG‐3) 52425 Jülich Germany
2Earth and Life Institute/Environmental Sciences, Université catholique de Louvain Croix du Sud 2, bte 2 1348 Louvain‐la‐Neuve Belgium
3UR 1115, Plantes et Systèmes de culture Horticoles, INRA. Site Agroparc, 84914 Avignon Cedex 9, France

Tóm tắt

Knowledge of soil moisture dynamics and its spatial variability is essential to improve our understanding of root water uptake and soil moisture redistribution at the local scale and the field scale. We investigated the potential and limitations of electrical resistivity tomography (ERT) to measure three‐dimensional soil moisture changes and variability in a large, undisturbed, cropped soil column and examined the interactions between soil and root system. Our analysis sustained the value of ERT as a tool to monitor and quantify water contents and water content changes in the soil, as long as the root biomass does not influence the observed resistivity. This is shown using a global water mass balance and a local validation using time domain reflectometry (TDR) probes. The observed soil moisture variability was rather high compared to values reported in the literature for bare soil. The measured water depletion rate, being the result of combined effects of root water uptake and soil water redistribution, was compared with the evaporative demand and root length densities. We observed a gradual downward movement of the maximum water depletion rate combined with periods of redistribution when there was less transpiration. Finally, the maximum root length density was observed at −70 cm depth, pointing out that root architecture can strongly depend on soil characteristics and states.

Từ khóa


Tài liệu tham khảo

Allen R.G., 1998, Crop evapotranspiration—Guidelines for computing crop water requirements

10.1016/j.eja.2009.08.005

10.2136/vzj2007.0005

Archie G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng., 146, 54

10.1093/jxb/erl237

10.1093/jxb/erj003

10.1007/s11104-005-0056-y

10.1016/j.still.2004.07.012

10.1029/95WR02995

10.1088/0957-0233/7/3/020

10.1023/A:1004325219804

10.1016/0926-9851(95)90044-6

10.1190/1.1444728

10.1016/S0341-8162(03)00038-9

10.2134/agronj1995.00021962008700020019x

10.1016/j.jhydrol.2004.04.005

10.1016/S0022-1694(02)00156-7

10.1046/j.1365-246X.2003.01890.x

10.2136/vzj2004.1230

10.2136/vzj2009.0086

10.2113/JEEG10.4.339

10.1029/2000WR000167

10.1023/A:1004368906698

10.1016/j.agwat.2006.06.008

10.1111/j.1365-246X.2006.03011.x

10.1007/BF00011056

10.2136/sssaj1993.03615995005700060003x

10.1007/BF02257535

Henry-Poulter S.An investigation of transport properties in natural soils using electrical resistance tomography. Ph.D. diss. Lancaster Univ. Lancaster UK.1996

Hupet F., 2002, On the identification of macroscopic root water uptake parameters from soil water content observations, Water Resour. Res., 38, 1300, 10.1029/2002WR001556

Itoh S., 1985, In situ measurement of rooting density by micro-rhizotron

10.1016/S0098-8472(01)00077-6

10.1029/96WR03978

Kemna A., 2000, Tomographic inversion of complex resistivity: Theory and application

Koestel J., 2008, Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR, Water Resour. Res., 44, 17, 10.1029/2007WR006755

10.2136/vzj2008.0027

10.2136/vzj2008.0154

10.1007/s00271-005-0027-3

La Brecque D.-J., 2002, Three-dimensional electromagnetics: Proceedings of the Second International Symposium, 259, 10.1016/S0076-6895(02)80097-X

La Brecque D.J., 1996, The effects of noise on Occam's inversion of resistivity tomography data, Geophysics, 61, 538, 10.1190/1.1443980

10.1007/s11001-005-3726-5

10.2136/sssaj1994.03615995005800040009x

10.1029/2002WR001581

10.1029/1999WR900173

10.1016/S0022-1694(99)00187-0

10.2136/vzj2009.0073

10.1002/(SICI)1099-1085(19990215)13:2<211::AID-HYP707>3.0.CO;2-P

10.1029/98JB02125

10.2136/vzj2003.4440

10.2134/agronj1978.00021962007000060043x

10.1016/j.still.2008.12.003

10.1093/jxb/36.9.1441

10.1190/1.2194900

10.1190/1.2209753

10.1111/j.1745-6584.1997.tb00103.x

10.1190/1.1444735

10.1007/s11104-008-9860-5

10.1093/treephys/17.8-9.577

Stubben M., 1998, Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), 593

10.1190/1.1649381

10.2134/agronj1970.00021962006200060039x

10.1029/2004GL021935

10.1029/WR016i003p00574

10.1029/2008WR006829

10.1029/2007GL031813

10.2136/sssaj2001.6541027x

10.1029/2000WR000027

10.2118/1863-A

Wells C.E., 2009, Rootfly: Software for minirhizotron image analysis

10.1002/jpln.200700145

Zenone T., 2008, Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations, 10.1071/FP08062

Zhou Q.Y., 2002, Temporal variations of the three-dimensional rainfall infiltration process in heterogeneous soil, Water Resour. Res., 38, 1030