Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rosenthal D (1946) The theory of moving sources of heat and its applications to metal treatments. Trans ASME 68:849–866
Cline HE, Anthony TR (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48:3895
Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J Appl Phys 51(2):941
Chande T, Mazumder J (1984) Estimating effects of processing conditions and variable properties upon pool shape, cooling rates, and absorption coefficient in laser welding. J Appl Phys 56(7):1981
Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B 15(2):299–305
Lankalapalli KN, Tu JF, Gartner M (1996) A model for estimating penetration depth of laser welding processes. J Phys D: Appl Phys 29(7):1831
Lankalapalli KN, Tu JF, Leong KH, Gartner M (1999) Laser weld penetration estimation using temperature measurements. J Manuf Sci Eng 121(2):179–188
Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans A 33(6):1817–1830
Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part II. Simulation of keyhole evolution, velocity, temperature profile, and experimental verification. Metall Mater Trans A 33(6):1831–1842
Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48(10):1923–1931
Ochi N, Okano S, Mochizuki M (2013) A new welding process simulation using a hybrid particle and grid method with explicit MPS. Quart J Jpn Weld Soc 31(4):40s–43s
Saso S, Mouri M, Tanaka M, Koshizuka S (2016) Numerical analysis of two-dimensional welding process using particle method. Weld World 60(1):127–136
Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389
Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024
Hügel H, Graf T (2014) Laser in der Fertigung—Grundlagen der Strahlquellen, Systeme, Fertigungsverfahren. Springer Vieweg, Wiesbaden
Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47
Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76
Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. Astron Astrophys 149:135–143
Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11(2):215–234
Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. J Waterway Port Coast Ocean Eng 129(6):250–259
Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389
Eringen AC (1967) Mechanics of continua. Wiley, New York
Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264
Monaghan JJ, Huppert H, Worster M (2005) Solidification using smoothed particle hydrodynamics. J Comput Phys 205:684–705
Batchelor GK (1974) An introduction to fluid dynamics. Cambridge University Press, Cambridge
Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226
Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354
Tong M, Browne DJ (2014) An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. Int J Heat Mass Transf 73:284–292
Liu G, Liu M (2003) Smoothed particle hydrodynamics—a meshfree particle method. World Scientific Publishing, Singapore
Moran MJ, Shapiro HN (2006) Fundamentals of engineering thermodynamics. Wiley, Hoboken
Lienhard JH IV, Lienhard VJH (2008) A heat transfer textbook. Phlogiston Press, Cambridge
Petit A-T, Dulong P-L (1819) Recherches sur quelques points importants de la Théorie de la Chaleur. Annales de Chimie et de Physique (in French) 10:395–413
Hu H, Argyropoulos SA (1996) Mathematical modelling of solidification and melting: A review. Modell Simul Mater Sci Eng 4:371–396
Lobovský L, Groenenboom PHL (2009) Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction. ACM 3(1):101–110
Liu M, Shao J, Li H (2013) Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J Hydrodyn Ser B 25(5):673–682
Michalowski A (2014) Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen. Doctoral thesis, Institut für Strahlwerkzeuge (IFSW), University of Stuttgart. Herbert Utz Verlag, Munich
Fleißner F (2010) Parallel object oriented simulation with Lagrangian particle methods. Doctoral thesis, Institute of Engineering and Computational Mechanics, University of Stuttgart. Shaker, Aachen
Pasimodo. http://www.itm.uni-stuttgart.de/research/pasimodo . Accessed 23 Feb 2016
Ordal MA, Bell RJ, Alexander RW, Newquist LA, Querry MR (1988) Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl Opt 27(6):1203–1209
Palik ED (1985) Handbook of optical constants of solids. Academic Press, Orlando
Dausinger F (1995) Strahlwerkzeug Laser: Energieeinkopplung und Prozeßeffektivität. Habilitation thesis, Institut für Strahlwerkzeuge, University of Stuttgart. Teubner, Stuttgart
Graf T, Berger P, Weber R, Hügel H, Heider A, Stritt P (2015) Analytical expressions for the threshold of deep-penetration laser welding. Laser Phys Lett 12(5):056002
Chmelíčková H, Šebestová H (2012) Pulsed laser welding. In: Dumitras DC (ed) Nd YAG laser. InTech, Rijeka, pp 41–58