Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

Haoyue Hu1, Peter Eberhard1
1Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rosenthal D (1946) The theory of moving sources of heat and its applications to metal treatments. Trans ASME 68:849–866

Cline HE, Anthony TR (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48:3895

Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J Appl Phys 51(2):941

Chande T, Mazumder J (1984) Estimating effects of processing conditions and variable properties upon pool shape, cooling rates, and absorption coefficient in laser welding. J Appl Phys 56(7):1981

Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B 15(2):299–305

Lankalapalli KN, Tu JF, Gartner M (1996) A model for estimating penetration depth of laser welding processes. J Phys D: Appl Phys 29(7):1831

Lankalapalli KN, Tu JF, Leong KH, Gartner M (1999) Laser weld penetration estimation using temperature measurements. J Manuf Sci Eng 121(2):179–188

Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans A 33(6):1817–1830

Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part II. Simulation of keyhole evolution, velocity, temperature profile, and experimental verification. Metall Mater Trans A 33(6):1831–1842

Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48(10):1923–1931

Ochi N, Okano S, Mochizuki M (2013) A new welding process simulation using a hybrid particle and grid method with explicit MPS. Quart J Jpn Weld Soc 31(4):40s–43s

Saso S, Mouri M, Tanaka M, Koshizuka S (2016) Numerical analysis of two-dimensional welding process using particle method. Weld World 60(1):127–136

Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

Steen WM, Mazumder J (2010) Laser material processing. Springer, London

Hügel H, Graf T (2014) Laser in der Fertigung—Grundlagen der Strahlquellen, Systeme, Fertigungsverfahren. Springer Vieweg, Wiesbaden

Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. Astron Astrophys 149:135–143

Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11(2):215–234

Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. J Waterway Port Coast Ocean Eng 129(6):250–259

Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

Doghri I (2000) Mechanics of deformable solids. Springer, Berlin

Eringen AC (1967) Mechanics of continua. Wiley, New York

Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

Monaghan JJ, Huppert H, Worster M (2005) Solidification using smoothed particle hydrodynamics. J Comput Phys 205:684–705

Hauke G (2008) An introduction to fluid mechanics and transport phenomena. Springer, Dordrecht

Batchelor GK (1974) An introduction to fluid dynamics. Cambridge University Press, Cambridge

Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

Tong M, Browne DJ (2014) An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. Int J Heat Mass Transf 73:284–292

Liu G, Liu M (2003) Smoothed particle hydrodynamics—a meshfree particle method. World Scientific Publishing, Singapore

Moran MJ, Shapiro HN (2006) Fundamentals of engineering thermodynamics. Wiley, Hoboken

Lienhard JH IV, Lienhard VJH (2008) A heat transfer textbook. Phlogiston Press, Cambridge

Petit A-T, Dulong P-L (1819) Recherches sur quelques points importants de la Théorie de la Chaleur. Annales de Chimie et de Physique (in French) 10:395–413

Hu H, Argyropoulos SA (1996) Mathematical modelling of solidification and melting: A review. Modell Simul Mater Sci Eng 4:371–396

Lobovský L, Groenenboom PHL (2009) Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction. ACM 3(1):101–110

Liu M, Shao J, Li H (2013) Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J Hydrodyn Ser B 25(5):673–682

Michalowski A (2014) Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen. Doctoral thesis, Institut für Strahlwerkzeuge (IFSW), University of Stuttgart. Herbert Utz Verlag, Munich

Fleißner F (2010) Parallel object oriented simulation with Lagrangian particle methods. Doctoral thesis, Institute of Engineering and Computational Mechanics, University of Stuttgart. Shaker, Aachen

Pasimodo. http://www.itm.uni-stuttgart.de/research/pasimodo . Accessed 23 Feb 2016

Price DJ (2012) Smoothed particle hydrodynamics and magnetohydrodynamics. J Comput Phys 231:759–794

Ordal MA, Bell RJ, Alexander RW, Newquist LA, Querry MR (1988) Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl Opt 27(6):1203–1209

Palik ED (1985) Handbook of optical constants of solids. Academic Press, Orlando

Dausinger F (1995) Strahlwerkzeug Laser: Energieeinkopplung und Prozeßeffektivität. Habilitation thesis, Institut für Strahlwerkzeuge, University of Stuttgart. Teubner, Stuttgart

Graf T, Berger P, Weber R, Hügel H, Heider A, Stritt P (2015) Analytical expressions for the threshold of deep-penetration laser welding. Laser Phys Lett 12(5):056002

Chmelíčková H, Šebestová H (2012) Pulsed laser welding. In: Dumitras DC (ed) Nd YAG laser. InTech, Rijeka, pp 41–58