Thermodynamic considerations of same-metal electrodes in an asymmetric cell

Materials Theory - Tập 3 - Trang 1-15 - 2019
M. H. Braga1,2, N. S. Grundish1, A. J. Murchison1, J. B. Goodenough1
1Texas Materials Institute and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, USA
2LAETA, Engineering Physics Department, Engineering Faculty, University of Porto, Porto, Portugal

Tóm tắt

An electrochemical cell contains three open thermodynamic systems that, in dynamic equilibrium, equalize their electrochemical potentials with that of their surrounding by forming an electric-double-layer-capacitor at the interface of the electrolyte with each of the two electrodes. Since the electrode/electrolyte interfaces are heterojunctions, the electrochemical potentials or Fermi levels of the two materials that contact the electrolyte at the two electrodes determine the voltage of a cell. The voltage is the sum of the voltages of the two interfacial electric-double-layer capacitors at the two electrode/electrolyte interfaces. A theoretical analysis of the thermodynamics that gives a quantitative prediction of the observed voltages in an asymmetric cell with an S8 relay at the positive electrode is provided. In addition, new discharge data and an X-ray photoelectron spectroscopy analysis of the lithium plated on the positive electrode of a discharged cell is presented. Ab initio, DFT methods were used to calculate the band structure and surface-state energies of the crystalline S8 solid sulfur relay. The theoretical exposition of the thermodynamics of the operative driving force of the chemical reactions in an electrochemical cell demonstrate that our initial experimental data and conclusions are valid. Other reported observations of lithium plating on the positive electrode, observations that were neither exploited nor their origins specified, are also cited.

Tài liệu tham khảo

J. Bardeen, Phys. Review 71(10), 717 (1947) and H. Kroemer, Nobel Lecture, Dec. 8, 2000, https://www.nobelprize.org/uploads/2018/06/kroemer-lecture.pdf M.H. Braga, A. Debski, W. Gasior, J. Alloys Compd., 616, 581–593 (2014) M.H. Braga, N.S. Grundish, A.J. Murchison, J.B. Goodenough, Energy Environ. Sci. 10, 331–336 (2017) M.H. Braga, L.F. Malheiros, I. Ansara, J. Phase Equilibria 16(4), 324–330 (1995) M.H. Braga, C.M. Subramaniyam, A.J. Murchison, J.B. Goodenough, J. Am, Chem. Soc. 140(20), 6343–6352 (2018) E.N. Brothers, A.F. Izmaylov, J.O. Normand, V. Barone, G.E. Scuseria, J. Chem. Phys. 129, 011102 (2008) S. Heo, J. Kim, G.K. Ong, D.J. Milliron, Nano Lett. 17(9), 5756–5761 (2017) M. Hoffmann, M. Zier, S. Oswald, J. Eckert, J. Power Sources 288, 434–440 (2015) J. Jenkins, W.H. Jarvis, Thermionics: Basic principles of electronics, vol 1 (Elsevier, 2013) C.J. Kaiser, The capacitor handbook: a comprehensive guide for correct component selection in all circuit applications. Know what to use when and where, 2nd edn. (C J Publishing, 2011) C. Kittel, H. Kroemer, Thermal physics, 2nd edn. (W. H. Freeman, 1980) F. Lenga, Z. Wei, C.M. Tan, R. Yazami, Electrochim. Acta 256, 52–62 (2017) S.-M. Liang, F. Taubert, A. Kozlov, J. Seidel, F. Mertens, R. Schmid-Fetzer, Intermetallics 81, 32–46 (2017) M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58(25), 2921–2923 (1991) NREL, Basic photovoltaic principles and methods, SERI/SP-290-1448, 1982 I. Prigogine, R. Defay, Chemical thermodynamics (Longmans, Green & Co, London, 1950/1954) J.B. Rivest, G. Li, I.D. Sharp, J.B. Neaton, D.J. Milliron, J. Phys. Chem. Lett. 5(14), 2450–2454 (2014) E.F. Schubert, Light-emitting diodes, 2nd edn. (Cambridge University Press, 2006) P. Singh, K. Shiva, H. Celio, J.B. Goodenough, Energy Environ. Sci. 8, 3000–3005 (2015) J. Sparkes, Semiconductor devices, 2nd edn. (CRC Press, 1994) S. Trasatti, Pure Appl. Chem. 58(7), 955–966 (1986) V. Zinth, C. von Lüders, M. Hofmann, J. Hattendorff, I. Buchberger, S. Erhard, J. Rebelo-Kornmeier, A. Jossen, R. Gilles, J. Power Sources 271, 152–159 (2014)