Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự tương tác cơ- nhiệt trong một chất rắn nhiệt đàn hồi tổng quát bậc phân số với sự khuếch tán
Tóm tắt
Mục tiêu chính của bài báo này là phân tích tác động của tham số bậc phân số, khuếch tán, vận tốc của tải trọng di chuyển và thời gian đến sự lan truyền sóng trong một không gian nhiệt đàn hồi tổng quát hai chiều. Môi trường được giả thiết là không bị biến dạng và không bị căng thẳng ban đầu và có nhiệt độ đồng đều. Các phương trình điều khiển của sự tổng quát bậc phân số của mô hình Lord-Shulman cho một môi trường đồng nhất và đồng isotropic được giải bằng các biến đổi Laplace-Fourier. Bằng cách sử dụng một kỹ thuật đảo ngược số, các phân bố của các trường khác nhau như dịch chuyển, ứng suất, nhiệt độ, nồng độ và thế hóa học được tính toán một cách số và hiển thị đồ họa cho vật liệu đồng. Tất cả các trường vật lý đều bị ảnh hưởng đáng kể bởi các tham số đã đề cập. Vấn đề về nhiệt đàn hồi tổng quát với khuếch tán đã được giảm về thành một trường hợp đặc biệt của vấn đề của chúng tôi.
Từ khóa
#nhiệt đàn hồi tổng quát #bậc phân số #khuếch tán #lan truyền sóngTài liệu tham khảo
Biot M (1956) Thermoelasticity and irreversible thermo-dynamics. J Appl Phys 27:240–253
Caputo M (1967) Linear model of dissipation whose Q is almost frequency independent-II. Geophys J R Astro Soc 13:529–539
Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729
Danilovskaya V (1950) Thermal stresses in an elastic half-space due to sudden heating of its boundary. Prikl Mat Mekh 14:316–318
Deswal S, Choudhary S (2008) Two dimensional interactions due to moving load in generalized thermoelastic solid with diffusion. Appl Math Mech 29:207–221
Deswal S, Kalkal K (2011) A two-dimensional generalized electro-magneto-thermo-viscoelastic problem for a half-space with diffusion. Int J Therm Sci 50:749–759
Deswal S, Kalkal K (2014) Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51:100–113
Dhaliwal R, Sherief H (1980) Generalized thermoelasticity for anisotropic media. Quart Appl Math 33:1–8
Ezzat MA (2010) Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys B 405:4188–4194
Ezzat MA (2011) Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys B 406:30–35
Ezzat MA, El-Bary AA (2016a) Generalized fractional magneto-thermo-viscoelasticity. Microsyst Technol. doi:10.1007/s00542-016-2904-5
Ezzat MA, El-Bary AA (2016b) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Technol, Microsyst. doi:10.1007/s00542-016-2976-2
Ezzat MA, Fayik MA (2011) Fractional order theory of thermoelastic diffusion. J Therm Stresses 34:851–872
Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7
Green AE, Naghdi PM (1991) A re-examination of the basic postulates of thermo-mechanics. Proc R Soc Lond A 432:171–194
Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stresses 15:253–264
Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–209
Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stresses 22:451–476
Jumarie G (2010) Derivation and solutions of some fractional Black- Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Comp Math Appl 59:1142–1164
Kalkal KK, Deswal S (2014) Generation of magneto-thermodiffusive plane waves in solids due to mechanical load. Int J Comput Methods Eng Sci Mech 15:322–329
Kumar S, Sikka JS, Choudhary S (2016) Three-dimensional analysis of a thermo-viscoelastic half-space due to thermal shock in temperature-rate-dependent thermoelasticity. J Mech 32:401–411
Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309
Miller KS, Ross B (1993) An Introduction to the fractional calculus and fractional differential equation. John Wiley and Sons, New York
Nowacki W (1974a) Dynamical problems of thermodiffusion in solids I. Bull Acad Pol SciSer Sci Tech 22:55–64
Nowacki W (1974b) Dynamical problems of thermodiffusion in solids II. Bull Acad Pol SciSer Sci Tech 22:129–135
Nowacki W (1974c) Dynamical problems of thermodiffusion in solids III. Bull Acad Pol SciSer Sci Tech 22:257–266
Nowacki W (1976) Dynamic problems of diffusion in solids. Eng Fract Mech 8:261–266
Olesiak ZS, Pyryev YA (1995) A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder. Int J Eng Sci 33:773–780
Podlubny I (1999) Fractional differential equations. Academic Press, New York
Podstrigach Ya S (1961) Differential equations of the problem of thermodiffusion in a solid deformable isotropic body. Dop Akad Nauk Ukr RSR No 2:169–172
Podstrigach Ya S (1964) The diffusion theory of strain of an isotropic solid medium. Vopr Mekh Real Tver Tela No 2:71–99
Povstenko YZ (2005) Fractional heat conduction equation and associated thermal stress. J Therm Stresses 28:83–102
Povstenko YZ (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Therm Stresses 34:97–114
Povstenko YZ (2015) Fractional Thermoelasticity. Springer, New York
Ross B (1977) The development of fractional calculus. Hist Math 4:75–89
Sharma JN, Kumar V (1997) Plane strain problems of transversely isotropic thermoelastic media. J Therm Stresses 20:463–476
Sharma N, Kumar R, Ram P (2008) Plane strain deformation in generalized thermoelastic diffusion. Int J Thermophys 29:1503–1522
Sheoran SS, Kalkal KK, Deswal S (2016) Fractional order thermo-viscoelastic problem with temperature dependent modulus of elasticity. Mech Adv Mater Struct 23:407–414
Sherief H, Saleh H (2005) A half-space problem in the theory of generalized thermoelastic diffusion. Int J Solids Struct 42:4484–4493
Sherief H, Hamza F, Saleh H (2004) The theory of generalized thermoelastic diffusion. Int J Eng Sci 42:591–608
Sherief H, El-Sayed AM, El-Latief AA (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275
Yadav R, Kalkal KK, Deswal S (2015) Two-temperature generalized thermoviscoelasticity with fractional order strain subjected to moving heat source: State space approach. J Math 2015:1–13 (Article ID 487513 )
Youssef HM (2010) Theory of fractional order generalized thermoelasticity. ASME J Heat Transf 132:1–7