Thermal state of electronic assemblies applied to smart building equipped with QFN64 device subjected to natural convection

Microelectronics Reliability - Tập 70 - Trang 79-83 - 2017
A. Baı̈ri1, Luís Roseiro2, Alexander Martín-Garín3, Kemi Adeyeye4, José Antonio Millán García3
1University of Paris, LTIE-GTE EA 4415, 50, rue de Sèvres, F-92410 Ville d’Avray, France
2Polytechnic Institute of Coimbra, ISEC, DEM, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
3University of the Basque Country, ENEDI Research Group, Plaza Europa 1, E-20018 San Sebastián, Spain
4University of Bath, Department of Architecture and Civil Engineering, Claverton Down, Bath BA2 7AY, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vasileska, 2016, Special issue, electrothermal and thermoelectric modeling of nanoscale devices, J. Comput. Electron., 15, 1, 10.1007/s10825-016-0796-3

Saenen, 2013, Size effects of a portable two-phase electronics cooling loop, Appl. Therm. Eng., 50, 1174, 10.1016/j.applthermaleng.2012.08.048

Narayanan, 2013, Thermal model of MOSFET with SELBOX structure, J. Comput. Electron., 12, 803, 10.1007/s10825-013-0485-4

Basak, 2013, Role of entropy generation on thermal management due to thermal convection in porous trapezoidal enclosures with isothermal and non-isothermal heating of wall, Int. J. Heat Mass Transf., 67, 810, 10.1016/j.ijheatmasstransfer.2013.08.019

Rashidi, 2013, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62, 515, 10.1016/j.ijheatmasstransfer.2013.03.004

Abu-Nada, 2015, Dissipative particle dynamics simulation of natural convection using variable thermal properties, Int. Commun. Heat Mass Transfer, 69, 84, 10.1016/j.icheatmasstransfer.2015.10.008

Sheremet, 2016, MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid, J. Magn. Magn. Mater., 416, 37, 10.1016/j.jmmm.2016.04.061

Chen, 2003, Electrical characterization and structure investigation of quad flat non-lead package for RFIC applications, Solid State Electron., 47, 315, 10.1016/S0038-1101(02)00213-7

2005

Assembly Guidelines for QFN (Quad Flat No-lead) and DFN (Dual Flat No-lead) Packages, Freescale Semiconductor, Inc., Application Note, Document Number: AN1902, Rev. 7.0, 10/2014.

Xu, 2014, Modeling and simulation of power electronic modules with microchannel coolers for thermo-mechanical performance, Microelectron. Reliab., 54, 2824, 10.1016/j.microrel.2014.07.053

Chenniki, 2015, Liquid crystal polymer for QFN packaging: predicted thermo-mechanical fatigue and design for reliability, Microelectron. Reliab., 55, 2793, 10.1016/j.microrel.2015.06.057

Gershman, 2012, Structural health monitoring of solder joints in QFN package, Microelectron. Reliab., 52, 3011, 10.1016/j.microrel.2012.07.001

Yang, 2007, Numerical modeling of warpage induced in QFN array molding process, Microelectron. Reliab., 47, 310, 10.1016/j.microrel.2006.09.036

Baïri, 2015, Thermal design of tilted electronic assembly with active QFN16 package subjected to natural convection, Int. Commun. Heat Mass Transfer, 66, 240, 10.1016/j.icheatmasstransfer.2015.06.008

Baïri, 2016, Detailed correlations on natural convective heat transfer coefficients for QFN32 electronic device on inclined PCB, Numer. Heat Transfer, Part A, 69, 841, 10.1080/10407782.2015.1090850

Baïri, 2016, Free convective heat transfer coefficient for high powered and tilted QFN64 electronic device, Microelectron. Reliab., 66, 85, 10.1016/j.microrel.2016.09.009

Baïri, 2016, Correlations highlighting effects of the PCB's copper ratio on the free convective heat transfer for a tilted QFN32 electronic package, Int. J. Heat Mass Transf., 92, 110, 10.1016/j.ijheatmasstransfer.2015.08.064

A. Baïri, C. Ortega Hermoso, D. San Martín Ortega, O. Haddad, Echanges convectifs naturels pour les montages électroniques inclinés équipés de QFN64, Proceedings of the French Thermal Congress 2016 (Congrès Français de Thermique 2016, Thermique et Multiphysique), Toulouse, France, May 31–June 3, 2016.

Souhar, 2014, Numerical analysis method of heat transfer in an electronic component using sensitivity analysis, J. Comput. Electron., 13, 1042, 10.1007/s10825-014-0630-8

Vasileska, 2008, Modeling heating effects in nanoscale devices: the present and the future, J. Comput. Electron., 7, 66, 10.1007/s10825-008-0254-y

A. Baïri, C. Ortega Hermoso, D. San Martín Ortega, Effects of the molding compound's thermal conductivity on the thermal state of the QFN64 electronic package subjected to natural convection, 12th International Conference on Heat Transfer Fluid Mechanics and Thermodynamics, HEFAT 2016, Malaga (Spain), 11–13 July 2016.

Hot Disk TPS 2500 S http://www.hotdiskinstruments.com/

Maqsood, 1994, Simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors using the transient plane source (TPS) technique, Int. J. Energy Res., 18, 777, 10.1002/er.4440180903

Ishizaki, 2015, Thermal simulation of joints with high thermal conductivities for power electronic devices, Microelectron. Reliab., 55, 1060, 10.1016/j.microrel.2015.04.005