Thermal postbuckling analysis of FG-CNTRC doubly curved panels with elastically restrained edges using Reddy's higher order shear deformation theory
Tóm tắt
Từ khóa
#CNT-reinforced composite #thermal postbuckling response #higher order shear deformation theory #doubly curved panels #tangential edge constraintsTài liệu tham khảo
E. T. Thostenson, C. Li, and T . W. Chou. Nanocomposites in context. Composites Science and Technology, 65, (3-4), (2005), pp. 491–516. https:/doi.org/10.1016/j.compscitech.2004.11.003.
H. S. Shen. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 91, (1), (2009), pp. 9–19. https:/doi.org/10.1016/j.compstruct.2009.04.026.
E. Garcıa-Macıas, L. Rodriguez-Tembleque, R. Castro-Triguero, and A. Saéz. Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear. Composites Part B: Engineering, 108, (2017), pp. 243–256. https:/doi.org/10.1016/j.compositesb.2016.10.002.
S. Zghal, A. Frikha, and F. Dammak. Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B: Engineering, 150, (2018), pp. 165–183. https:/doi.org/10.1016/j.compositesb.2018.05.037.
H. S. Shen. Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments. Engineering Structures, 122, (2016), pp. 174–183. https:/doi.org/10.1016/j.engstruct.2016.05.004.
L. T. N. Trang and H. V. Tung. Buckling and postbuckling of carbon nanotube-reinforced composite cylindrical panels subjected to axial compression in thermal environments. Vietnam Journal of Mechanics, 40, (1), (2018), pp. 47–61. https:/doi.org/10.15625/0866-7136/10088.
H. V. Tung and L. T. N. Trang. Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mechanica, 229, (5), (2018), pp. 1949–1969. https:/doi.org/10.1007/s00707-017-2093-z.
L. T. N. Trang and H. V. Tung. Thermomechanical nonlinear analysis of axially compressed carbon nanotube-reinforced composite cylindrical panels resting on elastic foundations with tangentially restrained edges. Journal of Thermal Stresses, 41, (4), (2018), pp. 418–438. https:/doi.org/10.1080/01495739.2017.1409093.
H. S. Shen. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells. Composite Structures, 93, (8), (2011), pp. 2096–2108. https:/doi.org/10.1016/j.compstruct.2011.02.011.
H. S. Shen. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells. Composite Structures, 93, (10), (2011), pp. 2496–2503. https:/doi.org/10.1016/j.compstruct.2011.04.005.
H. S. Shen and C. L. Zhang. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Materials & Design, 31, (7), (2010), pp. 3403–3411. https:/doi.org/10.1016/j.matdes.2010.01.048.
M. Mirzaei and Y. Kiani. Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica, 51, (9), (2016), pp. 2185–2201. https:/doi.org/10.1007/s11012-015-0348-0.
Y. Kiani. Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates. Journal of Thermal Stresses, 40, (11), (2017), pp. 1442–1460. https:/doi.org/10.1080/01495739.2017.1336742.
Y. Kiani. Thermal post-buckling of FG-CNT reinforced composite plates. Composite Structures, 159, (2017), pp. 299–306. https:/doi.org/10.1016/j.compstruct.2016.09.084.
Y. Kiani. Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets. Journal of Thermal Stresses, 41, (7), (2018), pp. 866–882. https:/doi.org/10.1080/01495739.2018.1425645.
H. V. Tung. Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints. Journal of Thermal Stresses, 40, (5), (2017), pp. 641–663. https:/doi.org/10.1080/01495739.2016.1254577.
H. V. Tung and L. T. N. Trang. Thermal postbuckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties. Journal of Thermoplastic Composite Materials, 33, (1), (2020), pp. 97–124. https:/doi.org/10.1177/0892705718804588.
V. T. Long and H. V. Tung. Thermal postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with tangentially restrained edges and temperature-dependent properties. Journal of Thermoplastic Composite Materials, 33, (10), (2020), pp. 1396–1428. https:/doi.org/10.1177/0892705719828789.
V. T. Long and H. V. Tung. Thermomechanical postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with elastically restrained unloaded edges. Journal of Thermal Stresses, 42, (5), (2019), pp. 658–680. https:/doi.org/10.1080/01495739.2019.1571972.
H. S. Shen. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Composites Part B: Engineering, 43, (3), (2012), pp. 1030–1038. https:/doi.org/10.1016/j.compositesb.2011.10.004.
P. T. Hieu and H. V. Tung. Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. Journal of Thermoplastic Composite Materials, (2019). https:/doi.org/10.1177/0892705719853611.
M. Mirzaei and Y. Kiani. Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerospace Science and Technology, 47, (2015), pp. 42–53. https:/doi.org/10.1016/j.ast.2015.09.011.
P. T. Hieu and H. V. Tung. Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges. Archive of Applied Mechanics, (2020), pp. 1–18. https:/doi.org/10.1007/s00419-020-01682-7.
H.S.ShenandY.Xiang.Postbucklingofpressure-loadednanotube-reinforcedcompositedoublycurvedpanels resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences, 107, (2016), pp. 225–234. https:/doi.org/10.1016/j.ijmecsci.2016.01.004.
L. T. N. Trang and H. V. Tung. Thermomechanical nonlinear stability of pressure-loaded CNT-reinforced composite doubly curved panels resting on elastic foundations. Nonlinear Engineering, 8, (1), (2019), pp. 582–596. https:/doi.org/10.1515/nleng-2018-0077.
L. T. N. Trang and H. V. Tung. Thermomechanical nonlinear stability of pressure-loaded functionally graded carbon nanotube-reinforced composite doubly curved panels with tangentially restrained edges. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, (16), (2019), pp. 5848– 5859. https:/doi.org/10.1177/0954406219856374.
H. V. Tung and N. D. Duc. Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions. Applied Mathematical Modelling, 38, (11-12), (2014), pp. 2848–2866. https:/doi.org/10.1016/j.apm.2013.11.015.
H. V. Tung. Postbuckling of thick FGM cylindrical panels with tangential edge constraints and temperature dependent properties. Vietnam Journal of Mechanics, 38, (2), (2016), pp. 123–140. https:/doi.org/10.15625/0866-7136/38/2/7066.
H. S. Shen and H. Wang. Thermal postbuckling of FGM cylindrical panels resting on elastic foundations. Aerospace Science and Technology, 38, (2014), pp. 9–19. https:/doi.org/10.1016/j.ast.2014.07.009.
K. Mehar, S. K. Panda, Y. Devarajan, and G. Choubey. Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading. Composite Structures, 216, (2019), pp. 406–414. https:/doi.org/10.1016/j.compstruct.2019.03.002.
H. S. Shen and Y. Xiang. Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations. Composite Structures, 123, (2015), pp. 383–392. https:/doi.org/10.1016/j.compstruct.2014.12.059.
L. T. N. Trang and H. V. Tung. Thermally induced postbuckling of higher order shear deformable CNT-reinforced composite flat and cylindrical panels resting on elastic foundations with elastically restrained edges. Mechanics Based Design of Structures and Machines, (2020), pp. 1–24. https:/doi.org/10.1080/15397734.2020.1785312.
J. N. Reddy and C. F. Liu. A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Science, 23, (3), (1985), pp. 319–330. https:/doi.org/10.1016/0020-7225(85)90051-5.