Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether

International Journal of Chemical Kinetics - Tập 40 Số 1 - Trang 1-18 - 2008
Zhenwei Zhao1, Marcos Chaos1, Andrei F. Kazakov1, Frederick L. Dryer1
1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

Tóm tắt

AbstractThe unimolecular decomposition reaction of dimethyl ether (DME) was studied theoretically using RRKM/master equation calculations. The calculated decomposition rate is significantly different from that utilized in prior work (Fischer et al., Int J Chem Kinet 2000, 32, 713–740; Curran et al., Int J Chem Kinet 2000, 32, 741–759). DME pyrolysis experiments were performed at 980 K in a variable‐pressure flow reactor at a pressure of 10 atm, a considerably higher pressure than previous validation data. Both unimolecular decomposition and radical abstraction are significant in describing DME pyrolysis, and hierarchical methodology was applied to produce a comprehensive high‐temperature model for pyrolysis and oxidation that includes the new decomposition parameters and more recent small molecule/radical kinetic and thermochemical data. The high‐temperature model shows improved agreement against the new pyrolysis data and the wide range of high‐temperature oxidation data modeled in prior work, as well as new low‐pressure burner‐stabilized species profiles (Cool et al., Proc Combust Inst 2007, 31, 285–294) and laminar flame data for DME/methane mixtures (Chen et al., Proc Combust Inst 2007, 31, 1215–1222). The high‐temperature model was combined with low‐temperature oxidation chemistry (adopted from Fischer et al., Int J Chem Kinet 2000, 32, 713–740), with some modifications to several important reactions. The revised construct shows good agreement against high‐ as well as low‐temperature flow reactor and jet‐stirred reactor data, shock tube ignition delays, and laminar flame species as well as flame speed measurements. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 1–18, 2008

Từ khóa


Tài liệu tham khảo

10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9

10.1002/1097-4601(2000)32:12<741::AID-KIN2>3.0.CO;2-9

Curran H. J.Personal communication 2004.

10.1016/S0082-0784(96)80269-4

10.1016/S0082-0784(98)80424-4

10.1016/S0082-0784(96)80287-6

10.1016/j.proci.2004.08.241

10.1021/jp994074c

10.1016/S0082-0784(00)80563-9

10.1016/S0010-2180(01)00249-8

10.1016/j.proci.2004.08.251

10.1021/jp9722566

10.1560/YQM7-5E5M-523Q-AQG2

10.1021/jp035423c

10.1021/jp0480302

10.1103/PhysRevA.38.3098

10.1063/1.464913

10.1103/PhysRevB.37.785

10.1021/j100096a001

10.1063/1.478676

Frisch M. J.;Trucks G. W.;Schlegel H. B.;Gill P. M. W.;Johnson B. G.;Robb M. A.;Cheeseman J. R.;Keith T.;Petersson G. A.;Montgomery J. A.;Raghavachari K.;Al‐Laham M. A.;Zakrzewski V. G.;Oritiz J. V.;Foresman J. B.;Cioslowski J.;Stefanov B. B.;Nanyakkara A.;Challacombe M.;Peng C. Y.;Ayala P. Y.;Chen W.;Wong M. W.;Andres J. L.;Replogle E. S.;Gomperts R.;Martin R. L.;Fox D. J.;Binkley J. S.;Defrees D. J.;Baker J.;Stewart J. P.;Head‐Gordon M.;Gonzalez C.;Pople J. A.Gaussian Inc. Pittsburgh PA 1998.

10.1021/j100162a034

10.1021/jp951217w

10.1021/jp981700h

Gilbert R. G., 1990, Theory of Unimolecular Recombination Reactions

10.1021/jp003890d

10.1021/jp001921z

Kee R. J.;Dixon‐Lewis G.;Warnatz J.;Coltrin M. E.;Miller J. A.Technical Report SAND86‐8246 Sandia National Laboratories Albuquerque NM 1986.

10.1016/S0082-0784(82)80180-X

10.1139/v75-388

10.1139/v77-585

10.1002/kin.550090314

Harding L. B.InDOE BBS 25th Annual Combustion Research Conference Warrenton VA 2004.

Kerr J. A., 1961, Progress in Reaction Kinetics, 105

10.1021/j100375a034

10.1021/jp027335i

10.1016/0009-2614(88)87462-1

10.1021/jp011350q

10.1021/jp014044l

Barker J. R.;Benson S. W.;Mendenhall G. D.;Goldern D. M.U.S. NTIS PB Report 1977.

10.1002/kin.20026

10.1002/kin.20218

Li J.Ph.D. thesis Department of Mechanical and Aerospace Engineering Princeton University Princeton NJ 2004.

Li J.;Kazakov A.;Chaos M.;Dryer F. L.InProceedings of the 5th U.S. National Combustion Meeting2007 Paper C26.

10.1139/v69-220

10.1002/jcc.10219

10.1021/jp9520613

10.1039/b105462g

10.1021/jp012425t

Mulenko S. A., 1987, Rev Roum Phys, 32, 173

Smith G. P.;Golden D. M.;Frenklach M.;Moriarty N. W.;Eiteneer B.;Goldenberg M.;Bowman C. T.;Hanson R. K.;Song S.;Gardiner Jr. W. C.;Lissianski V. V.;Qin Z.Available athttp://www.me.berkeley.edu/gri_mech/ 1999.

10.1016/S0045-6535(00)00231-9

10.1002/(SICI)1097-4601(1997)29:8<627::AID-KIN8>3.0.CO;2-W

10.1139/v67-449

10.1021/jp037154w

10.1016/S0082-0784(06)80078-0

10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U

10.1016/S0082-0784(89)80097-9

10.1002/ijch.199900008

10.1002/kin.10009

Bowman C. T.;Golden D. M.;Hanson R. K.;Pitsch H.;Davidson D. F.;Bardos A.;Cook R.;Hong Z.;Iyengar P.;Shashank S.;Vasu S.;Walters K.;Malhotra R.GCEP Technical Report2006; available athttp://gcep.stanford.edu/pdfs/QeJ5maLQQrugiSYMF3ATDA/2.6.5.bowman 06.pdf.

10.1021/jp013909s

10.1016/S1540-7489(02)80149-3

Kee R. J.;Rupley F. M.;Miller J. A.Technical Report SAND89‐8009 Sandia National Laboratories Albuquerque NM 1989.

10.1016/j.proci.2006.08.044

Kee R. J.;Grcar J. F.;Smooke M. D.;Miller J. A. Technical Report SAND85‐8240 Sandia National Laboratories Albuquerque NM 1985.

Kee R. J.;Dixon‐Lewis G.;Warnatz J.;Coltrin M. E.;Miller J. A.Technical Report SAND86‐8246 Sandia National Laboratories Albuquerque NM 1986.

10.1016/j.combustflame.2004.06.009

Law C. K.;Jomaas G.Personal communication 2004.

10.1016/0010-2180(90)90049-W

10.1016/j.proci.2006.07.177