Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities

Cancer Medicine - Tập 8 Số 6 - Trang 3167-3181 - 2019
Mansour Sedighi1, Abed Zahedi Bialvaei1, Michael R. Hamblin2,3,4, Elnaz Ohadi1, Arezoo Asadi1, Masoumeh Halajzadeh1, Vahid Lohrasbi1, Nima Mohammadzadeh1, Taghi Amiriani5, Marcela Krůtová6, Abolfazl Amini7, Ebrahim Kouhsari1,7
1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2Department of Dermatology, Harvard Medical School, Boston, Massachusetts
3Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
4Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
5Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
62nd Faculty of Medicine, Department of Medical Microbiology Charles University and Motol University Hospital Prague Czech Republic
7Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Tóm tắt

Abstract

Successful treatment of cancer remains a challenge, due to the unique pathophysiology of solid tumors, and the predictable emergence of resistance. Traditional methods for cancer therapy including radiotherapy, chemotherapy, and immunotherapy all have their own limitations. A novel approach is bacteriotherapy, either used alone, or in combination with conventional methods, has shown a positive effect on regression of tumors and inhibition of metastasis. Bacteria‐assisted tumor‐targeted therapy used as therapeutic/gene/drug delivery vehicles has great promise in the treatment of tumors. The use of bacteria only, or in combination with conventional methods was found to be effective in some experimental models of cancer (tumor regression and increased survival rate). In this article, we reviewed the major advantages, challenges, and prospective directions for combinations of bacteria with conventional methods for tumor therapy.

Từ khóa


Tài liệu tham khảo

10.1093/carcin/bgp263

10.3322/caac.21398

10.3322/caac.21262

10.3322/caac.21492

10.1016/j.ctrv.2015.05.009

10.1186/1423-0127-17-21

10.1038/nrc2934

10.1016/j.cyto.2016.01.002

10.1016/j.phrs.2016.10.016

10.1038/mt.2009.295

10.1289/ehp.95103s8263

10.2741/2357

10.1016/j.cell.2006.02.042

10.3389/fmicb.2018.00016

10.3389/fonc.2017.00064

10.1371/journal.pone.0180034

10.1097/00002371-200303000-00011

10.1038/sj.cgt.7700634

10.1158/1078-0432.CCR-04-2510

10.1186/s13027-018-0180-y

10.1016/j.phrs.2016.01.028

10.1111/j.1349-7006.2007.00503.x

10.1007/s13139-016-0415-z

10.1080/2162402X.2017.1382791

Kouhsari E, 2017, The potential roles of bacteria to improve radiation treatment outcome, Clin Transl Oncol, 19, 1

10.1038/nbt937

10.1073/pnas.0408422102

10.1038/nprot.2006.376

10.1158/1078-0432.CCR-08-3206

10.1016/S0168-3659(01)00340-6

10.1016/j.molmed.2017.05.008

10.1667/0033-7587(2001)155[0716:TUORIB]2.0.CO;2

10.1002/jgm.3015

Zhang S, 2014, Role of nontoxigenic Clostridium novyi in solid tumor therapy, Rev Med Microbiol, 25, 71, 10.1097/MRM.0000000000000005

Zhou S, 2018, Tumour‐targeting bacteria engineered to fight cancer, Nat Rev Cancer, 1

DangL BettegowdaC KinzlerKW VogelsteinB.Combination bacteriolytic therapy for the treatment of tumors. United States patent. US 8 007 782.2011.

10.1538/expanim.16-0033

10.1200/JCO.2002.20.1.142

Schlechte H, 1988, Recombinant plasmid DNA variation of Clostridium oncolyticum—model experiments of cancerostatic gene transfer, Zentralbl Bakteriol Mikrobiol Hyg A, 268, 347

10.1111/1751-7915.12787

10.1093/emboj/16.2.281

10.1038/sj.cgt.7700303

10.1128/AEM.65.10.4295-4300.1999

10.1016/j.bbrc.2007.10.126

10.1002/jcp.25859

10.1158/0008-5472.CAN-09-3453

10.1038/gt.2008.188

10.1158/2159-8290.CD-11-0201

10.1038/nm1203-1465

10.1056/NEJM200101043440106

10.1158/0008-5472.CAN-04-3002

10.1172/JCI200419762

10.1046/j.1365-2958.1999.01272.x

10.1016/j.tranon.2018.01.019

10.3390/toxins9080236

10.1038/sj.bjc.6605403

10.1038/s41467-018-03233-9

10.1016/j.tim.2005.01.002

10.1016/j.biopha.2018.02.140

10.1073/pnas.91.9.3814

10.1073/pnas.72.9.3666

Gardlik R, 2010, Bacterial vectors and delivery systems in cancer therapy, IDrugs, 13, 701

Bermudes D, 2002, Live bacteria as anticancer agents and tumor‐selective protein delivery vectors, Curr Opin Drug Discov Devel, 5, 194

Nuyts S, 2001, Increasing specificity of anti‐tumor therapy: cytotoxic protein delivery by non‐pathogenic clostridia under regulation of radio‐induced promoters, Anticancer Res, 21, 857

10.1016/S0176-6724(87)80150-5

10.1073/pnas.251543698

10.1111/j.1349-7006.2010.01628.x

10.1007/s12013-015-0528-5

10.1023/A:1010644217648

10.1093/toxsci/kfi316

10.1038/5205

10.1007/s11307-007-0120-5

10.1038/nprot.2008.32

10.1073/pnas.0406242101

Dang L, 2013, Combination bacteriolytic therapy for the treatment of tumors, Google Patents

10.1016/j.jss.2009.02.023

Theys J, 2015, Clostridium to treat cancer: dream or reality?, Ann Transl Med, 3, S21

Malmgren RA, 1955, Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration, Cancer Res, 15, 473

10.1111/j.1349-7006.2003.tb01395.x

10.1016/j.tim.2006.02.002

10.1634/theoncologist.7-6-492

Wachsberger P, 2003, Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents, Explor Mech Interact, 9, 1957

10.1038/sj.gt.3301499

10.1016/j.ijrobp.2011.05.055

Pawelek JM, 1997, Tumor‐targeted Salmonella as a novel anticancer vector, Cancer Res, 57, 4537

10.1038/5205

10.1385/1-59259-086-1:419

10.1016/S0959-8049(00)00336-1

10.1016/S0092-8674(03)00754-2

10.1126/science.1154986

10.1073/pnas.2036598100

10.1016/j.mehy.2014.12.021

10.1200/JCO.2000.18.19.3339

10.1016/j.nut.2013.09.006

Khademi S, 2014, Application of hydrogen producing microorganisms in radiotherapy: an idea, Iran J Public Health, 43, 1018

10.1016/j.jmhi.2015.04.001

10.1111/j.1572-0241.2002.05946.x

10.1016/j.nut.2005.08.003

10.1016/j.ijrobp.2007.11.009

10.3748/wjg.v13.i6.912

10.1186/1748-717X-5-31

10.1016/j.ejca.2011.06.010

10.1017/S0007114512001225

10.1016/j.ijrobp.2013.07.038

10.1007/s12013-013-9807-1

10.3346/jkms.2014.29.10.1372

10.1016/j.mehy.2018.07.024

10.3389/fmicb.2018.00983

Xu G, 2001, Strategies for enzyme/prodrug cancer therapy, Clin Cancer Res, 7, 3314

10.1038/sj.bjc.6690589

10.1172/JCI10001

10.1038/s41551-017-0181-y

10.1016/j.ctim.2013.08.018

10.1016/0732-8893(89)90137-5

10.1097/00075198-199904000-00005

10.1016/S1470-2045(00)00019-X

Davis AJ, 2002, Tumor physiology and resistance to chemotherapy: repopulation and drug penetration, Clin Relev Resist Cancer Chemother, 1

10.1002/ijc.22688

10.4161/cbt.6.9.4622

10.4161/cbt.8.6.7594

10.1038/sj.bjc.6603990

10.1177/0148607109332004

10.1016/S0016-5085(18)31661-5

10.1177/1534735418794885

10.1002/14651858.CD008831.pub3

10.1126/science.1130651

10.1016/S0076-6879(09)65013-8

10.1038/sj.bjc.6603367

10.1517/13543784.16.2.209

Hatefi A, 2009, Perspectives in vector development for systemic cancer gene therapy, Gene Ther Mol Biol, 13, 15

Mei S, 2002, Optimization of tumor‐targeted gene delivery by engineered attenuated Salmonella typhimurium, Anticancer Res, 22, 3261

10.1038/sj.bjc.6601345

10.1038/sj.bjc.6603624

10.1002/bit.20883

10.1016/j.ymthe.2005.01.008

10.1016/j.drudis.2012.03.010

10.1016/j.addr.2010.07.009

10.1038/nrmicro.2017.172

10.1016/j.bbrc.2015.08.022

10.4068/cmj.2016.52.3.173

10.1021/acs.nanolett.6b00262

10.1002/mrm.21606

10.1073/pnas.1211287110

10.1038/nrmicro2834

10.3390/life3010001

10.1038/nnano.2014.32

10.2147/DDDT.S31564

10.1016/j.ejca.2006.10.005

10.1055/s-0029-1196806

Busch W, 1868, Aus der Sitzung der medicinischen Section vom 13 November 1867, Berl Klin Wochenschr, 5, 137

Pearl R, 1929, Cancer and Tuberculosis, Am J Hyg, 9, 97

10.1038/nrmicro777

10.1007/s12026-008-8087-0

10.1016/j.femsle.2005.03.037

10.4161/cbt.3.3.704

10.1073/pnas.0406242101

10.1002/ijc.24957

Colet WB, 1906, Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus, Trans Southern Surg Gynecol Ass, 18, 197

10.1006/excr.1998.4057

10.1074/jbc.275.6.4363

10.1016/S0002-9440(10)63721-2

10.1177/019262339902700111

Dietzel F, 1976, Tumor hyperthermia using high frequency for increase of oncolysis by Clostridium butyricum (M 55), Strahlentherapie, 152, 537

Dietzel F, 1977, Intensification of the oncolysis by clostridia by means of radio‐frequency hyperthermy in experiments on animals–dependence on dosage and on intervals (author's transl), Strahlentherapie, 153, 263

Gericke D, 1979, Further progress with oncolysis due to apathogenic clostridia, Zentralbl Bakteriol Orig A, 243, 102