Theory of Molecular Reorientation in Liquids: Magnetic Spin Resonance Line Shapes

Journal of Chemical Physics - Tập 54 Số 5 - Trang 2110-2119 - 1971
H. Sillescu1
1Institut für Physikalische Chemie, der Universität Frankfurt(M), Germany

Tóm tắt

The Debye model of rotational Brownian motion and the rotational random jump model have been extended to allow for time fluctuations of the rotational diffusion constant and the jump rate constant, respectively. The treatment is applicable to experimental situations which are conventionally described in terms of a distribution of correlation times and to systems where molecular reorientation is complicated, e.g., by rapid chemical exchange processes. Correlation functions for spin relaxation are discussed in some detail and are compared with the corresponding correlation functions for dielectric relaxation. In particular, the ESR (or NMR) line shape is given for a simple example of very slow reorientation where the rotational correlation time is comparable with the spin relaxation time. In this case, the Debye model and the jump model yield different line shapes, and further changes occur if environmental fluctuations are considered. Details are given for fluctuations described by an Uhlenbeck–Ornstein process.

Từ khóa


Tài liệu tham khảo

1968, Advan. Magn. Resonance, 3, 1, 10.1016/B978-1-4832-3116-7.50008-4

1968, J. Chem. Phys., 49, 347, 10.1063/1.1669829

1970, J. Chem. Phys., 52, 439, 10.1063/1.1672703

1937, J. Chem. Phys., 5, 113, 10.1063/1.1749988

1942, Rev. Mod. Phys., 14, 12, 10.1103/RevModPhys.14.12

1963, Zh. Eksp. Teor. Fiz., 45, 1509

1964, Sov. Phys. JETP, 18, 1041

1960, Phil. Trans. Roy. Soc. Ser., A252, 317

1956, J. Am. Chem. Soc., 78, 20, 10.1021/ja01582a004

1968, Z. Naturforsch., 23a, 1728

1913, Ann. Physik, 40, 817

1941, J. Chem. Phys., 9, 341, 10.1063/1.1750906

1951, J. Chem. Phys., 19, 1484, 10.1063/1.1748105

1941, J. Am. Chem. Soc., 63, 385, 10.1021/ja01847a013

1934, J. Phys. Radium, 5, 487

1936, J. Phys. Radium, 7, 1, 10.1051/jphysrad:01936007010100

1960, J. Chem. Phys., 33, 639, 10.1063/1.1731229

1966, Proc. Phys. Soc. (London), 88, 513, 10.1088/0370-1328/88/2/321

1962, J. Chem. Phys., 37, 1699, 10.1063/1.1733360

1967, J. Chem. Phys., 47, 2178, 10.1063/1.1712250

1968, J. Chem. Phys., 49, 831, 10.1063/1.1670147

1966, Zh. Eksp. Teor. Fiz., 50, 1343

1966, Sov. Phys. JETP, 23, 893

1968, Sov. Phys. JETP, 26, 361

1968, J. Chem. Phys., 48, 3493, 10.1063/1.1669642

1963, J. Chem. Phys., 38, 2404, 10.1063/1.1733516

1968, J. Chem. Phys., 49, 3380, 10.1063/1.1670611

1969, J. Chem. Phys., 51, 3842, 10.1063/1.1672600

1970, J. Chem. Phys., 52, 1810, 10.1063/1.1673222

1965, Ann. Physik., 16, 262

1967, Ber. Bunsenges Physik. Chem., 71, 979, 10.1002/bbpc.19670710905

1967, Advan. Mol. Relaxation Processes, 1, 13, 10.1016/0001-8716(67)80003-8

1969, J. Chem. Phys., 50, 783, 10.1063/1.1671130

1960, J. Chem. Phys., 33, 1371, 10.1063/1.1731414

1967, J. Phys. Chem., 71, 4021, 10.1021/j100871a045

1970, J. Phys. Chem., 74, 654, 10.1021/j100698a029

1963, J. Chem. Phys., 39, 326, 10.1063/1.1734250

1965, Advan. Magn. Resonance, 1, 33, 10.1016/B978-1-4832-3114-3.50008-8

1957, J. Phys. Chem., 61, 1328, 10.1021/j150556a015

1963, Zh. Eksp. Teor. Fiz., 45, 1523

1964, Sov. Phys. JETP, 18, 1049

1968, J. Chem. Phys., 48, 534, 10.1063/1.1667981

1968, J. Chem. Phys., 49, 2455, 10.1063/1.1670429

1969, J. Chem. Phys., 50, 3784, 10.1063/1.1671627

1970, J. Chem. Phys., 52, 2527, 10.1063/1.1673337