Theory and finite element computations of a unified cyclic phase transformation model for monocrystalline materials at small strains

Computational Mechanics - Tập 40 - Trang 429-445 - 2006
Erwin Stein1, Ole Zwickert1
1Institute of Mechanics and Computatinal Mechanics, University of Hannover, Hannover, Germany

Tóm tắt

After a survey the refined numerical treatment and verification is presented for a rate-independent macroscopic unified PT material model (including mass conservation with respect to phase fractions and covexified free energy) by Govindjee and Miehe (Comput Methods Appl Mech Eng 191:215–238, 2001) for describing SME and SE effects within a linear kinematic setting. Special attention is given to temperature dependent PTs. The material model was implemented into ABAQUS via the UMAT material interface in 2004. Validation of this PT model is carried out with experimental data supplied by Xiangyang et al. (J Mech Phys Solids 48:2163–2182, 2000), using 3D finite element computations. Experimentally gained material data from different sources are used and numerical results of energy barriers for PTs are given. Another feature is the simulation of suppressed shape memory effects by quasiplastic temperature induced PT. Furthermore, a plane strain problem is treated with comparisons of butterfly shaped expansions of martensitic PT and plastic deformation, correspondingly.

Tài liệu tham khảo

Ball JM, James RD (1987) Fine phase mixtures and minimizers of energy. Arch Rat Mech Anal 100:13–52 Bhattacharya K (2003) Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford Carstensen C (2005) Ten remarks on nonconvex minimisation for phase transition simulations. Comput Methods Appl Mech Engrg 194:169–193 Govindjee S, Miehe C (2001) A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput Methods Appl Mech Engrg 191:215–238 Govindjee S, Mielke A, Hall GJ (2003) The free-energy of mixing for n-variant martensitic phase transformations using qausi-convex analysis. J Mech Phys Solids 52:I–XXVI Hall GJ, Govindjee S (2002) Application of the relaxed free energy of mixing to problems in shape memory alloy simulation. J Intell Material Syst Struct 13:773–782 Howard G, Shield TW (1995) Orientation dependence of the pseudoelastic behavior of single crystals of Cu–Al–Ni in tension. J Mech Phys Solids 43:869–895 Levitas VI, Idesman AV, Stein E (1998) Finite element simulation of martensitic phase transitions in elastoplastic materials. Int J Solids Struct 35:855–887 Mielke A, Theil F, Levitas VI (2002) A variational formulation of rate-independent phase transformations using extremum principle. Arch Rational Mech Anal 162:137–177 Patoor E, Eberhardt A, Berveiller M (1995) Micromechanical modelling of superelasticity in shape memory alloys. J Phys IV C8-5:277–292 Stein E (ed) (2003) Error-controlled adaptive finite elements in solid mechanics. Chichester [u.a]: Wiley, New York Uebel A (2002) Untersuchung des thermischen und Mechanischen Hystereseverhaltens von einkristallinen Cu82Al14Ni4-Formgedächtnislegierungen. Dissertation an der Fakultät III - Prozesswissenschaften der Universität Berlin Winzek B (2000) Entwicklung, Herstellung und Charakterisierung von Mikroaktoren mit Formgedaechtnisschichten auf der Basis von TiNi. Dr.-Ing. thesis at Institut fuer Materialforschung, Programm Mikrosystemtechnik, Forschungszentrum Karlsruhe GmbH, Wissenschaftliche Berichte FZKA 6467 Xiangyang Z, Qingping S, Shouwen Y (2000) A non-invariant plane model for the interface in cualni single crystal shape memory alloys. J Mech Phy Solids 48:2163–2182