Theoretical investigation of the relative stabilities of <i>X</i>SS<i>X</i> and <i>X</i><sub>2</sub>SS isomers (<i>X</i> = F, Cl, H, and CH<sub>3</sub>)

Journal of Computational Chemistry - Tập 16 Số 4 - Trang 465-477 - 1995
F. Matthias Bickelhaupt1, Miquel Solà1,2, Paul von Ragué Schleyer1
1Computer Chemie Centrum, Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Germany
2Institut de Química Computacional and Departament de Química, Universitat de Girona, Plaça de l'Hospital 6, 17071 Girona, Catalonia, Spain.

Tóm tắt

AbstractThe structures and relative stabilities of a series of disulfide (XSSX) and thiosulfoxide (X2SS) isomers have been studied for X = F, Cl, CH3, and H, using various levels of conventional ab initio and density functional theory (DFT). The XSSX isomers are more stable than the X2SS isomers for all substituents. The energy gap ΔE(X) between the two isomers increases (i.e., XSSX becomes more stable with respect to X2SS), and the SS bond contracts in the series for X = F, Cl, CH3, H. The results are interpreted by means of natural population analysis (NPA) (e.g., the interaction between the disulfide moiety S and the two substituents X·). The bonding in the hypervalent X2SS species is similar to the bonding in the nonhypervalent XSSX and does not involve a special role for sulfur‐3d orbitals. These orbitals acquire only minimal populations and are not to be conceived as valence orbitals. The DFT and conventional ab initio results, Xα/DZP and MP2/6‐31G** optimized structures and isomerization energies (at the highest levels of both methods), agree well. © 1995 by John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1021/cr00050a001

March J., 1992, Advanced Organic Chemistry, 597

10.1021/ja00186a005

Stryer L., 1988, Biochemistry

10.1021/ja00896a037

10.1021/ja00902a056

10.1021/ja01072a005

10.1002/cber.19650980132

(b)R. D.Brown F. R.Burden andG. P.Pez J. Chem. Soc. Chem. Commun. 277(1965);

10.1021/ic00339a029

10.1016/0022-2852(91)90109-N

Klamann D., 1985, Methoden der Organischen Chemie, 22

Schmidt M., 1985, Comprehensive Inorganic Chemistry, 795

Hendra P. J., 1968, J. Chem. Soc., 908, 10.1039/j19680000908

10.1246/bcsj.31.130

(c)C. J.Marsden R. D.Brown andP. D.Godfrey J. Chem. Soc. Chem. Commun. 399(1979);

10.1016/0022-2860(79)80209-4

10.1021/ja01862a067

Steudel R., 1987, Z. Naturforsch., 42, 163, 10.1515/znb-1987-0208

10.1039/tf9696502300

10.1021/ic50169a035

10.1002/zfch.19800200904

10.1016/0022-2860(78)87233-0

10.1016/0009-2614(79)87073-6

(l)G.Holzmann M.Feuerhahn R.Minkwitz andG.Vahl J. Chem. Res. Synop. 71(1980).

10.1063/1.1670621

10.1021/ja01279a011

10.1021/j100547a014

10.1021/j100547a013

Kushner L. M., 1950, J. Am. Chem. Soc., 72, 477, 10.1021/ja01157a124

10.1039/tf9716703216

10.1515/zna-1965-1221

10.1021/ja00451a014

10.1016/0166-1280(85)80017-8

10.1016/0166-1280(85)80083-X

10.1021/j100271a005

10.1021/ja00334a010

10.1063/1.448231

10.1016/0166-1280(93)90072-J

10.1016/0166-1280(93)85041-V

McWeeny R., 1992, Methods of Molecular Quantum Mechanics

Pilar F. L., 1990, Elementary Quantum Chemistry

10.1021/ja00267a063

10.1007/978-3-642-86105-5

Parr R. G., 1989, Density‐Functional Theory of Atoms and Molecules

Slater J. C., 1974, Quantum Theory of Molecules and Solids

Frisch M. J., 1992, Gaussian 92, Revision C

Foresman J. B., 1993, Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian

R. D.AmosandJ. E.Rice The Cambridge Analytic Derivative Package Issue 4.1 Cambridge UK 1989.

10.1021/ja00160a022

10.1016/0009-2614(91)90064-G

4 and 6

10.1063/1.443903

10.1021/ja00505a002

10.1021/ja00178a014

10.1021/ja00056a033

10.1021/ja00002a008

10.1021/ja00089a033

10.1103/PhysRev.46.618

10.1063/1.453520

(a) NBO Version 3.1 E. D.Glendening A. E.Reed J. E.Carpenter andF.Weinhold;

10.1021/ja00544a007

10.1063/1.449486

10.1063/1.449360

10.1021/cr00088a005

10.1016/0301-0104(73)80059-X

10.1002/qua.560330204

10.1016/0021-9991(92)90277-6

10.1016/0301-0104(75)80152-2

Baerends E. J., 1978, Int. J. Quantum Chem., Quantum Chem. Symp., 12, 169

10.1021/j100191a027

10.1063/1.454603

10.1021/ic50196a034

10.1021/ic50197a006

10.1007/BF02401406

10.1002/qua.560230605

10.1063/1.451353

10.1016/S0277-5387(00)86876-X

10.1139/p80-159

10.1103/PhysRevB.33.8822

10.1007/BF00551408

Allred A. L., 1950, J. Inorg. Nucl. Chem., 5, 264, 10.1016/0022-1902(58)80003-2

(a) Reference 13c Chapter 4;

10.1002/jcc.540040303

10.1021/ic00339a012

10.1021/j100072a005

Weast R. C., 1982, CRC Handbook of Chemistry and Physics

Albright T. A., 1985, Orbital Interactions in Chemistry

(a)R. H.Jackson J. Chem. Soc. 4585(1962);

10.1063/1.1732733

10.1021/ja00963a005

10.1021/ic00184a013

Francisco J. S., 1994, J. Phys. Chem., 98, 5650, 10.1021/j100073a013

10.1021/ja00073a035

(a) Reference 38 Chapter 12.2;

10.1021/ja00167a011