Theoretical and empirical scale dependency of Z‐R relationships: Evidence, impacts, and correction

Journal of Geophysical Research D: Atmospheres - Tập 118 Số 14 - Trang 7435-7449 - 2013
Sébastien Verrier1,2,3, Laurent Barthès3, Cécile Mallet3
1Centre National d'Etudes Spatiales (CNES), Paris, France
2Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN/UPMC/IPSL) Paris France
3Université Versailles Saint Quentin LATMOS/IPSL (UMR 8190) INSU/CNRS, Guyancourt, France

Tóm tắt

AbstractEstimation of rainfall intensities from radar measurements relies to a large extent on power‐laws relationships between rain rates R and radar reflectivities Z, i.e., Z = a*R^b. These relationships are generally applied unawarely of the scale, which is questionable since the nonlinearity of these relations could lead to undesirable discrepancies when combined with scale aggregation. Since the parameters (a,b) are expectedly related with drop size distribution (DSD) properties, they are often derived at disdrometer scale, not at radar scale, which could lead to errors at the latter. We propose to investigate the statistical behavior of Z‐R relationships across scales both on theoretical and empirical sides. Theoretically, it is shown that claimed multifractal properties of rainfall processes could constrain the parameters (a,b) such that the exponent b would be scale independent but the prefactor a would be growing as a (slow) power law of time or space scale. In the empirical part (which may be read independently of theoretical considerations), high‐resolution disdrometer (Dual‐Beam Spectropluviometer) data of rain rates and reflectivity factors are considered at various integration times comprised in the range 15 s – 64 min. A variety of regression techniques is applied on Z‐R scatterplots at all these time scales, establishing empirical evidence of a behavior coherent with theoretical considerations: a grows as a 0.1 power law of scale while b decreases more slightly. The properties of a are suggested to be closely linked to inhomogeneities in the DSDs since extensions of Z‐R relationships involving (here, strongly nonconstant) normalization parameters of the DSDs seem to be more robust across scales. The scale dependence of simple Z = a*R^b relationships is advocated to be a possible source of overestimation of rainfall intensities or accumulations. Several ways for correcting such scaling biases (which can reach >15–20% in terms of relative error) are suggested. Such corrections could be useful in some practical cases where Z‐R scale biases are significant, which is especially expected for convective rainfall.

Từ khóa


Tài liệu tham khảo

Battan L. J., 1973, Radar Observations of the Atmosphere, 324

10.1029/2004GL021899

10.1016/j.advwatres.2011.12.016

10.1175/1520-0450(2000)039<1088:IUIZRR>2.0.CO;2

10.1016/j.atmosres.2007.07.003

10.1175/1520-0450(1999)038<1519:RRGCUO>2.0.CO;2

10.1063/1.1699986

10.1016/j.jhydrol.2005.11.048

10.1103/PhysRevLett.73.959

10.1029/96JD00718

10.1034/j.1600-0870.1993.t01-3-00004.x

10.1016/j.advwatres.2012.03.026

10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2

10.1175/JAMC-D-11-0185.1

10.1007/BF00874898

Kolmogorov A. N., 1941, Local structure of turbulence in an incompressible liquid for very large Reynolds numbers, Proc. Acad. Sci. URSS, Geochem. Sect., 30, 299

10.1175/JAM2183.1

10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2

10.1090/qam/10666

10.1016/S0022-1694(99)00053-0

10.1017/CBO9780511564482.009

10.1007/978‐0‐387‐34918‐3_18

10.1088/1367‐2630/10/7/075017

10.1016/j.atmosres.2010.01.004

10.1017/CBO9781139093811

10.1016/j.atmosres.2008.02.016

10.1016/j.advwatres.2012.03.024

Marquardt D., 1963, An algorithm for least‐squares estimation of nonlinear parameters, SIAM J, Appl. Math, 11, 431

10.1175/2008JHM1040.1

10.1175/1525-7541(2003)004<0782:ERIFWR>2.0.CO;2

Novikov E. A., 1964, Intermittency of turbulence and spectrum of fluctuations in energy‐disspation, Izv. Akad. Nauk. SSSR. Ser. Geofiz., 3, 408

Obukhov A. M., 1949, Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk S.S.S.R, Ser. Geograf. Geofiz., 13, 58

10.5194/hess-7-668-2003

10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2

10.1002/jgrd.50656

10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2

10.1029/JD092iD08p09693

10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2

Schertzer D., 2002, Mathematical Problems in Environmental Science and Engineering, Ser. in Contemporary Appl. Math, 106

10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2

10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2

10.1029/97JD02065

10.1103/PhysRevLett.72.336

10.1029/93WR00962

10.1175/JHM-383.1

10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2

10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2

10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2

10.5194/hess-5-615-2001

10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2

10.1016/j.jhydrol.2010.05.035

10.1029/2011JD015719

Yaglom A. M., 1966, The influence of the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval, Sov. Phys. Dokl., 2, 26

Yu N.(2012) Précipitations méditerranéennes intenses – Characterisation microphysique et dynamique dans l'atmosphère et impacts au sol thèse Université Joseph Fourier Grenoble France Laboratoire d'Etude des Transferts en Hydrologie et Environnement Grenoble France.