The zero relaxation limit for the Aw–Rascle–Zhang traffic flow model

Paola Goatin1, Nicolas Laurent-Brouty1,2
1Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur, Inria, CNRS, LJAD, Sophia Antipolis, France
2Ecole des Ponts ParisTech, Champs-sur-Marne, France

Tóm tắt

We study the behavior of the Aw–Rascle–Zhang model when the relaxation parameter converges to zero. In a Lagrangian setting, we use the wavefront tracking method with splitting technique to construct a sequence of approximate solutions. We prove that this sequence converges to a weak entropy solution of the relaxed system associated to a given initial datum with bounded variation. Besides, we also provide an estimate on the decay of positive waves. We finally prove that the solutions of the Aw–Rascle–Zhang system with relaxation converge to a weak solution of the corresponding scalar conservation law when the relaxation parameter goes to zero.

Tài liệu tham khảo

Amadori, D., Corli, A.: Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow. Nonlinear Anal. 72(5), 2527–2541 (2010) Amadori, D., Guerra, G.: Global BV solutions and relaxation limit for a system of conservation laws. Proc. R. Soc. Edinburgh Sect. A 131(1), 1–26 (2001) Ancona, F., Goatin, P.: Uniqueness and stability of \(L^\infty \) solutions for Temple class systems with boundary and properties of the attainable sets. SIAM J. Math. Anal. 34(1), 28–63 (2002) Aw, A., Klar, A., Materne, T., Rascle, M.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63(1), 259–278 (2002) Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000) Bagnerini, P., Rascle, M.: A multiclass homogenized hyperbolic model of traffic flow. SIAM J. Math. Anal. 35(4), 949–973 (2003) Baiti, P., Bressan, A.: The semigroup generated by a Temple class system with large data. Differ. Integral Equ. 10(3), 401–418 (1997) Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and its Applications, vol. 20. Oxford University Press, Oxford (2000) Bressan, A., Colombo, R.M.: Decay of positive waves in nonlinear systems of conservation laws. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26(1), 133–160 (1998) Bressan, A., Goatin, P.: Oleinik type estimates and uniqueness for \(n\times n\) conservation laws. J. Differ. Equ. 156(1), 26–49 (1999) Bressan, A., Goatin, P.: Stability of \(L^\infty \) solutions of Temple class systems. Differ. Integral Equ. 13(10–12), 1503–1528 (2000) Bressan, A., Yang, T.: A sharp decay estimate for positive nonlinear waves. SIAM J. Math. Anal. 36(2), 659–677 (2004) Chalons, C., Goatin, P.: Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling. Interfaces Free Bound. 10(2), 197–221 (2008) Chen, G.Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47(6), 787–830 (1994) Chen, G.Q., Liu, T.-P.: Zero relaxation and dissipation limits for hyperbolic conservation laws. Commun. Pure Appl. Math. 46(5), 755–781 (1993) Christoforou, C., Trivisa, K.: Sharp decay estimates for hyperbolic balance laws. J. Differ. Equ. 247(2), 401–423 (2009) Christoforou, C., Trivisa, K.: Decay of positive waves of hyperbolic balance laws. Acta Math. Sci. Ser. B Engl. Ed. 32(1), 352–366 (2012) Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc, New York (1948) Crasta, G., Piccoli, B.: Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete Contin. Dyn. Syst. 3(4), 477–502 (1997) Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin (2000) Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B Methodol. 29(4), 277–286 (1995) Goatin, P., Gosse, L.: Decay of positive waves for \(n\times n\) hyperbolic systems of balance laws. Proc. Am. Math. Soc. 132(6), 1627–1637 (2004) Greenberg, J.M.: Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J. Appl. Math. 62(3), 729–745 (2001/2002) Hoff, D.: Invariant regions for systems of conservation laws. Trans. Am. Math. Soc. 289(2), 591–610 (1985) Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws, volume 152 of Applied Mathematical Sciences. Springer, New York (2002) Jenssen, H.K., Sinestrari, C.: On the spreading of characteristics for non-convex conservation laws. Proc. R. Soc. Edinburgh Sect. A 131(4), 909–925 (2001) Lattanzio, C., Marcati, P.: The zero relaxation limit for the hydrodynamic Whitham traffic flow model. J. Differ. Equ. 141(1), 150–178 (1997) Li, T.: Global solutions and zero relaxation limit for a traffic flow model. SIAM J. Appl. Math. 61(3), 1042–1061 (2000) Li, T.: \(L^1\) stability of conservation laws for a traffic flow model. Electron. J. Differ. Equ. pp. No. 14, 18, (2001) Li, T.: Well-posedness theory of an inhomogeneous traffic flow model. Discrete Contin. Dyn. Syst. Ser. B 2(3), 401–414 (2002) Li, T.: Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow. J. Differ. Equ. 190(1), 131–149 (2003) Li, T., Liu, H.: Critical thresholds in a relaxation model for traffic flows. Indiana Univ. Math. J. 57(3), 1409–1430 (2008) Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317–345 (1955) Oleĭ nik, O.A.: Discontinuous solutions of non-linear differential equations. Uspehi Mat. Nauk (N.S.) 12(3(75)), 3–73 (1957) Oleĭ nik, O.A.: Discontinuous solutions of non-linear differential equations. Am. Math. Soc. Transl. (2) 26, 95–172 (1963) Payne, H.J.: Models of freeway traffic and control. In: Mathematical Models of Public Systems (1971) Rascle, M.: An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model. Math. Comput. Model. 35(5–6), 581–590 (2002) Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956) Serre, D.: Systèmes de lois de conservation II. Structures géométriques, oscillation et problèmes mixtes (1996) Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. Am. Math. Soc. 280(2), 781–795 (1983) Wagner, D.H.: Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68(1), 118–136 (1987) Whitham, G.B.: Linear and nonlinear waves. pp. xvi+636 (1974). Pure and Applied Mathematics Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B Methodol. 36(3), 275–290 (2002)