Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giả Thuyết Độ Yếu Của Lực Hấp Dẫn Và Ràng Buộc Độ Nhớt Với Các Sửa Đổi Sáu Đạo Hàm
Tóm tắt
Giả thuyết độ yếu của lực hấp dẫn và ràng buộc độ nhớt trên mật độ entropi đặt ra những hạn chế cho các lý thuyết trường hiệu ứng năng lượng thấp, có thể giúp phân biệt các lý thuyết có khả năng hoàn thiện UV. Gần đây, đã có những gợi ý về một mối tương quan có thể giữa hai ràng buộc này. Trong một số trường hợp thú vị, hành vi của chúng thực sự là như vậy mà các giả thuyết này mâu thuẫn với nhau. Được thúc đẩy bởi những công trình này, chúng tôi nghiên cứu tỷ lệ khối lượng trên điện tích và tỷ lệ độ nhớt trên mật độ entropi cho các brane đen AdS5 mang điện, mà holographically đối xứng với các lý thuyết CFT bốn chiều ở nhiệt độ hữu hạn. Chúng tôi nghiên cứu một họ các sửa đổi nhiễu loạn bốn và sáu đạo hàm đối với những nền này. Chúng tôi xác định miền trong không gian tham số nơi hai ràng buộc này được thỏa mãn và đặc biệt tìm thấy rằng việc bao gồm sửa đổi nhiễu loạn kế tiếp làm mở rộng các khả năng thỏa mãn cả hai ràng buộc.
Từ khóa
#giả thuyết độ yếu của lực hấp dẫn #độ nhớt #ràng buộc độ nhớt #lý thuyết trường hiệu ứng năng lượng thấp #brane đen AdS5 #CFT #sửa đổi nhiễu loạnTài liệu tham khảo
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].
P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].
C. Vafa, The string landscape and the swampland, hep-th/0509212 [SPIRES].
M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].
S. Cremonini, J.T. Liu and P. Szepietowski, Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation, JHEP 03 (2010) 042 [arXiv:0910.5159] [SPIRES].
Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].
R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].
S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on eta/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].
S.S. Pal, W eak Gravity Conjecture, Central Charges and η/s, arXiv:1003.0745 [SPIRES].
Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [SPIRES].
T. Banks, M. Johnson and A. Shomer, A note on gauge theories coupled to gravity, JHEP 09 (2006) 049 [hep-th/0606277] [SPIRES].
A. Giveon and D. Gorbonos, On black fundamental strings, JHEP 10 (2006) 038 [hep-th/0606156] [SPIRES].
A. Giveon, D. Gorbonos and M. Stern, Fundamental Strings and Higher Derivative Corrections to d-Dimensional Black Holes, JHEP 02 (2010) 012 [arXiv:0909.5264] [SPIRES].
A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].
A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].
R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].
X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity Bound, Causality Violation and Instability with Stringy Correction and Charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].
G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Shear Viscosity and Chern-Simons Diffusion Rate from Hyperbolic Horizons, Phys. Lett. B 677 (2009) 74 [arXiv:0809.3388] [SPIRES].
R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].
A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].
R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].
A. Ghodsi and M. Alishahiha, Non-relativistic D3-brane in the presence of higher derivative corrections, Phys. Rev. D 80 (2009) 026004 [arXiv:0901.3431] [SPIRES].
A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].
S.S. Pal, η/s at finite coupling, Phys. Rev. D 81 (2010) 045005 [arXiv:0910.0101] [SPIRES].
J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].
X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].
X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].
R. Brustein and A.J.M. Medved, Proof of a universal lower bound on the shear viscosity to entropy density ratio, Phys. Lett. B 691 (2010) 87 [arXiv:0908.1473] [SPIRES].
M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].
N. Banerjee and S. Dutta, Near-Horizon Analysis of η/s, arXiv:0911.0557 [SPIRES].
R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [SPIRES].
R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [SPIRES].
D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].
R.R. Metsaev and A.A. Tseytlin, Curvature Cubed Terms In String Theory Effective Actions, Phys. Lett. B 185 (1987) 52 [SPIRES].
L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B 195 (1982) 76 [SPIRES].
S. Deser and B. Tekin, Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett. 89 (2002) 101101 [hep-th/0205318] [SPIRES].
S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [SPIRES].
R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev. 116 (1959) 1322 [SPIRES].
R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595 [SPIRES].
R.L. Arnowitt, S. Deser, and C.W. Misner, The dynamics of general relativity, in Gravitation: an Introduction to Current Research, L. Witten eds., John Wiley, New York U.S.A. (1962), pp 227-265.
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press, Oxford U.K. (1975).
V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].
M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].
S.W. Hawking, The path integral approach to quantum gravity, in General Relativity: An Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).
M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys. 98 (1985) 391 [SPIRES].
G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].
G. Barnich and G. Compère, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [SPIRES].
G. Compère, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, arXiv:0708.3153 [SPIRES].
J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [SPIRES].
V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].
R.M. Wald and A. Zoupas, A General Definition of ”Conserved Quantities” in General Relativity and Other Theories of Gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [SPIRES].
D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].
G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].
N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].
N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].
R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].
T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].
R.R. Metsaev and A.A. Tseytlin, Order alpha-prime (Two Loop) Equivalence of the String Equations of Motion and the σ-model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293 (1987) 385 [SPIRES].
D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].