The weak asymptotic equivalence and the generalized inverse

Lithuanian Mathematical Journal - Tập 50 - Trang 34-42 - 2010
D. Djurčić1, R. Nikolić1, A. Torgašev2
1Technical Faculty in Čačak, Čačak, Serbia
2Faculty of Science, Belgrade, Serbia

Tóm tắt

In this paper, we discuss the relationship between the weak asymptotic equivalence relation and the generalized inverse in the class ${\mathcal{A}} $ of all nondecreasing and unbounded functions, defined and positive on a half-axis [a,+∞) (a > 0). In the main theorem, we prove a proper characterization of the functional class ${{ORV} \cap \mathcal{A}} $ , where ORV is the class of all ${\mathcal{O}} $ -regularly varying functions (in the sense of Karamata).

Tài liệu tham khảo

S. Aljančić and D. Arandjelović, \({\mathcal{O}} \)-regularly varying functions, Publ. Inst. Math. (Beograd), 22(36):5–22, 1977.

V.G. Avakumović, Sur une extension de la condition de convergence des théorèmes inverses de sommabilité, C. R. Acad. Sci. Paris, 200:1515–1517, 1935.

V.G. Avakumović, Uber einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci., 29–30:107–117, 1936.

V.G. Avakumović, Sur l’équation differentiele de Thomas–Fermi, Publ. Inst. Math. (Beograd), 1(15):101–113, 1947.

A.A. Balkema, J.L. Geluk, and L. de Haan, An extension of Karamata’s tauberian theorem and its connection with complementary convex functions, Q. J. Math. Oxf. Ser., 30(2):385–416, 1979.

N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.

V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukr. Mat. Zh., 54(2):179–206, 2002.

J. Karamata, Sur un mode de croissance régulière des functions, Mathematica (Cluj), 4:38–53, 1930.