The weak asymptotic equivalence and the generalized inverse
Tóm tắt
Tài liệu tham khảo
S. Aljančić and D. Arandjelović, \({\mathcal{O}} \)-regularly varying functions, Publ. Inst. Math. (Beograd), 22(36):5–22, 1977.
V.G. Avakumović, Sur une extension de la condition de convergence des théorèmes inverses de sommabilité, C. R. Acad. Sci. Paris, 200:1515–1517, 1935.
V.G. Avakumović, Uber einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci., 29–30:107–117, 1936.
V.G. Avakumović, Sur l’équation differentiele de Thomas–Fermi, Publ. Inst. Math. (Beograd), 1(15):101–113, 1947.
A.A. Balkema, J.L. Geluk, and L. de Haan, An extension of Karamata’s tauberian theorem and its connection with complementary convex functions, Q. J. Math. Oxf. Ser., 30(2):385–416, 1979.
N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.
V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukr. Mat. Zh., 54(2):179–206, 2002.
J. Karamata, Sur un mode de croissance régulière des functions, Mathematica (Cluj), 4:38–53, 1930.
