The visualization of hyperbolic patterns from invariant mapping method

Computers and Graphics - Tập 36 - Trang 92-100 - 2012
Peichang Ouyang1,2, Dongsheng Cheng1, Yanhua Cao2, Xiaogen Zhan2
1Department of Scientific Computing and Computer Applications, Sun Yat-Sen University, China
2School of Mathematics and Physics, Jinggangshan University, China

Tài liệu tham khảo

Trudeau, 1987

Escher, 1989

Schattschneider, 1990

Dunham, 1981, Creating repeating hyperbolic patterns, Comput Graphics, 15, 10.1145/965161.806808

Dunham, 1986, Hyperbolic symmetry, Comput Math Appl, 12B, 139, 10.1016/0898-1221(86)90147-1

Dunham D. An algorithm to generate repeating hyperbolic patterns. In: The international society of the arts, mathematics and architecture, 2007. p. 111–8.

Chen, 2009, Visual presentation of dynamic systems with hyperbolic plane symmetry, Chaos Solitons Fractals, 40, 621, 10.1016/j.chaos.2007.08.020

Adcock, 2000, Iterated functions systems with hyperbolic symmetry in the hyperbolic plane, Comput Graphics, 24, 791, 10.1016/S0097-8493(00)00079-0

Chen, 2009, Automatic generation of symmetric IFSs contracted in the hyperbolic plane, Chaos Solitons Fractals, 41, 829, 10.1016/j.chaos.2008.04.006

Chung, 1997, Tessellations with the modular group from dynamics, Comput Graphics, 21, 523, 10.1016/S0097-8493(97)00028-9

Coxeter, 1980

Dumont, 2001, n Dimensional chaotic attractors with crystallographic symmetry, Chaos Solitons Fractals, 12, 761, 10.1016/S0960-0779(00)00040-0

Carlson, 1999, Two artistic orbit trap rendering methods for Newton M-set fractals, Comput Graphics, 23, 925, 10.1016/S0097-8493(99)00123-5

Zou, 2006, Orbit trap rendering method for generating artistic images with cyclic or dihedral symmetry, Comput Graphics, 30, 470, 10.1016/j.cag.2006.02.009

Housmann, 1997