The visualization of hyperbolic patterns from invariant mapping method
Tài liệu tham khảo
Trudeau, 1987
Escher, 1989
Schattschneider, 1990
Dunham D. An algorithm to generate repeating hyperbolic patterns. In: The international society of the arts, mathematics and architecture, 2007. p. 111–8.
Chen, 2009, Visual presentation of dynamic systems with hyperbolic plane symmetry, Chaos Solitons Fractals, 40, 621, 10.1016/j.chaos.2007.08.020
Adcock, 2000, Iterated functions systems with hyperbolic symmetry in the hyperbolic plane, Comput Graphics, 24, 791, 10.1016/S0097-8493(00)00079-0
Chen, 2009, Automatic generation of symmetric IFSs contracted in the hyperbolic plane, Chaos Solitons Fractals, 41, 829, 10.1016/j.chaos.2008.04.006
Chung, 1997, Tessellations with the modular group from dynamics, Comput Graphics, 21, 523, 10.1016/S0097-8493(97)00028-9
Coxeter, 1980
Dumont, 2001, n Dimensional chaotic attractors with crystallographic symmetry, Chaos Solitons Fractals, 12, 761, 10.1016/S0960-0779(00)00040-0
Carlson, 1999, Two artistic orbit trap rendering methods for Newton M-set fractals, Comput Graphics, 23, 925, 10.1016/S0097-8493(99)00123-5
Zou, 2006, Orbit trap rendering method for generating artistic images with cyclic or dihedral symmetry, Comput Graphics, 30, 470, 10.1016/j.cag.2006.02.009
Housmann, 1997