The use of plant models in deep learning: an application to leaf counting in rosette plants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635–44.
Lemnatec. http://www.lemnatec.com . Accessed 01 Aug 2017.
Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. 2017;90(1):204–16. https://doi.org/10.1111/tpj.13472 .
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. In: The IEEE conference on computer vision and pattern recognition (CVPR), Miami Beach, FL, USA; 2009.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–4. https://doi.org/10.1038/nature14539 , arXiv:1312.6184v5 .
Ubbens JR, Stavness I. Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci. 2017;. https://doi.org/10.3389/fpls.2017.01190 .
Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Front Plant Sci 2016;7:1–7. https://doi.org/10.3389/fpls.2016.01419 , arXiv:1604.03169
Pawara P, Okafor E, Surinta O, Schomaker L, Wiering M. Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. Porto, Portugal. In: ICPRAM; 2017.
Pound MP, Burgess AJ, Wilson MH, Atkinson JA, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv. 2016;. https://doi.org/10.1101/053033 .
Lobet G, Draye X, Périlleux C. An online database for plant image analysis software tools An online database for plant image analysis software tools. Plant Methods. 2013;9:1–7. https://doi.org/10.1186/1746-4811-9-38 .
Moreno-Torres JG, Raeder T, Alaiz-Rodríguez R, Chawla NV, Herrera F. A unifying view on dataset shift in classification. Pattern Recogn. 2012;45(1):521–30. https://doi.org/10.1016/j.patcog.2011.06.019 .
Prusinkiewicz P. Modeling plant growth and development. Curr Opin Plant Biol. 2004;7(1):79–83. https://doi.org/10.1016/j.pbi.2003.11.007 .
Prusinkiewicz P, Runions A. Computational models of plant development and form. New Phytol. 2012;193(3):549–69. https://doi.org/10.1111/j.1469-8137.2011.04009.x .
Sievänen R, Godin C, DeJong TM, Nikinmaa E. Functional-structural plant models: a growing paradigm for plant studies. Ann Bot. 2014;114(4):599–603. https://doi.org/10.1093/aob/mcu175 .
Lindenmayer A. Mathematical models for cellular interaction in development, parts I and II. J Theor Biol. 1968;18:280–315.
Prusinkiewicz P. Graphical applications of L-systems. In: Proceedings on graphics interface ’86/vision interface ’86. Canadian Information Processing Society, Toronto; 1986. p. 247–253. http://dl.acm.org/citation.cfm?id=16564.16608 .
Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants. New York: Springer; 1990 (With Hanan J, Fracchia FD, Fowler D, de Boer MJM, and Mercer L).
Karwowski R, Prusinkiewicz P. Design and implementation of the L+C modeling language. Electron Notes Theor Comput Sci. 2003;86(2):1–19. https://doi.org/10.1016/S1571-0661(04)80680-7 .
Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C. L-Py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front Plant Sci. 2012;3:76. https://doi.org/10.3389/fpls.2012.00076 .
Prusinkiewicz P. Art and science of life: designing and growing virtual plants with L-systems. In: International society for horticultural science (ISHS), Leuven, Belgium; 2004. p. 15–28. https://doi.org/10.17660/ActaHortic.2004.630.1
Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct Plant Biol. 2008;35(10):739–50.
Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C. OpenAlea: a visual programming and component-based software platform for plant modelling. Funct Plant Biol. 2008;35(10):751–60.
Benoit L, Rousseau D, Belin É, Demilly D, Chapeau-Blondeau F. Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms. Comput Electron Agric. 2014;104:84–92. https://doi.org/10.1016/j.compag.2014.04.001 .
Leitner D, Klepsch S, Bodner G, Schnepf A. A dynamic root system growth model based on L-Systems. Plant Soil. 2010;332(1):177–92. https://doi.org/10.1007/s11104-010-0284-7 .
Prusinkiewicz P, Hammel MS, Mjolsness E. Animation of plant development. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques. SIGGRAPH ’93. ACM, New York; 1993. p. 351–360. https://doi.org/10.1145/166117.166161 .
Prusinkiewicz PW, Remphrey WR, Davidson CG, Hammel MS. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems. Can J Bot. 1994;72(5):701–14. https://doi.org/10.1139/b94-091 .
Prusinkiewicz P, Mündermann L, Karwowski R, Lane B. The use of positional information in the modeling of plants. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. SIGGRAPH ’01. ACM, New York; 2001. p. 289–300. https://doi.org/10.1145/383259.383291 .
Mündermann, L., Erasmus, Y., Lane, B., Coen, E., Prusinkiewicz, P. Quantitative modeling of Arabidopsis development. Plant Physiol 2005;139(2):960–968. https://doi.org/10.1104/pp.105.060483 , http://www.plantphysiol.org/content/139/2/960.full.pdf .
Chen W, Wang H, Li Y, Su H, Wang Z, Tu C, Lischinski D, Cohen-Or D, Chen B. Synthesizing training images for boosting human 3D pose estimation. In: Proceedings-2016 4th international conference on 3D vision, 3DV 2016; 2016. p. 479–488. https://doi.org/10.1109/3DV.2016.58 , arxiv:1604.02703 .
Su H, Qi CR, Li Y, Guibas LJ. Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: The IEEE international conference on computer vision (ICCV); 2015. p. 2686–94.
Lobet G, Koevoets IT, Noll M, Meyer PE, Tocquin P, Pagès L, Périlleux C. Using a structural root system model to evaluate and improve the accuracy of root image analysis pipelines. Front Plant Sci. 2017;8:1–11. https://doi.org/10.3389/fpls.2017.00447 .
Minervini M, Fischbach A, Scharr H, Tsaftaris SA. Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn Lett. 2015;81:80–9. https://doi.org/10.1016/j.patrec.2015.10.013 .
De Vylder J, Vandenbussche F, Hu Y, Philips W, Van Der Straeten D. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiol. 2012;160(3):1149–59. https://doi.org/10.1104/pp.112.202762 .
Minervini M, Abdelsamea MM, Tsaftaris SA. Image-based plant phenotyping with incremental learning and active contours. Ecol Inf. 2014;23:35–48. https://doi.org/10.1016/j.ecoinf.2013.07.004 .
Hamuda E, Glavin M, Jones E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput Electron Agric. 2016;125:184–99. https://doi.org/10.1016/j.compag.2016.04.024 .
Zhu H, Meng F, Cai J, Lu S. Beyond pixels: a comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent. 2016;34:12–27. https://doi.org/10.1016/j.jvcir.2015.10.012 .
Virtual Laboratory. http://www.algorithmicbotany.org/virtual_laboratory/ . Accessed 01 Aug 2017.