The use of plant models in deep learning: an application to leaf counting in rosette plants

Plant Methods - Tập 14 Số 1 - 2018
Jordan Ubbens1, Mikolaj Cieslak2, Przemysław Prusinkiewicz2, Ian Stavness1
1University of Saskatchewan, 105 Administration Place, Saskatoon, S7N 5C5, Canada
2University of Calgary, 2500 University Dr. NW, Calgary, T2N 1N4, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635–44.

Lemnatec. http://www.lemnatec.com . Accessed 01 Aug 2017.

Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. 2017;90(1):204–16. https://doi.org/10.1111/tpj.13472 .

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. In: The IEEE conference on computer vision and pattern recognition (CVPR), Miami Beach, FL, USA; 2009.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–4. https://doi.org/10.1038/nature14539 , arXiv:1312.6184v5 .

Ubbens JR, Stavness I. Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci. 2017;. https://doi.org/10.3389/fpls.2017.01190 .

Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Front Plant Sci 2016;7:1–7. https://doi.org/10.3389/fpls.2016.01419 , arXiv:1604.03169

Pawara P, Okafor E, Surinta O, Schomaker L, Wiering M. Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. Porto, Portugal. In: ICPRAM; 2017.

Pound MP, Burgess AJ, Wilson MH, Atkinson JA, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv. 2016;. https://doi.org/10.1101/053033 .

Lobet G, Draye X, Périlleux C. An online database for plant image analysis software tools An online database for plant image analysis software tools. Plant Methods. 2013;9:1–7. https://doi.org/10.1186/1746-4811-9-38 .

Moreno-Torres JG, Raeder T, Alaiz-Rodríguez R, Chawla NV, Herrera F. A unifying view on dataset shift in classification. Pattern Recogn. 2012;45(1):521–30. https://doi.org/10.1016/j.patcog.2011.06.019 .

Prusinkiewicz P. Modeling plant growth and development. Curr Opin Plant Biol. 2004;7(1):79–83. https://doi.org/10.1016/j.pbi.2003.11.007 .

Prusinkiewicz P, Runions A. Computational models of plant development and form. New Phytol. 2012;193(3):549–69. https://doi.org/10.1111/j.1469-8137.2011.04009.x .

Sievänen R, Godin C, DeJong TM, Nikinmaa E. Functional-structural plant models: a growing paradigm for plant studies. Ann Bot. 2014;114(4):599–603. https://doi.org/10.1093/aob/mcu175 .

Lindenmayer A. Mathematical models for cellular interaction in development, parts I and II. J Theor Biol. 1968;18:280–315.

Prusinkiewicz P. Graphical applications of L-systems. In: Proceedings on graphics interface ’86/vision interface ’86. Canadian Information Processing Society, Toronto; 1986. p. 247–253. http://dl.acm.org/citation.cfm?id=16564.16608 .

Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants. New York: Springer; 1990 (With Hanan J, Fracchia FD, Fowler D, de Boer MJM, and Mercer L).

Karwowski R, Prusinkiewicz P. Design and implementation of the L+C modeling language. Electron Notes Theor Comput Sci. 2003;86(2):1–19. https://doi.org/10.1016/S1571-0661(04)80680-7 .

Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C. L-Py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front Plant Sci. 2012;3:76. https://doi.org/10.3389/fpls.2012.00076 .

Prusinkiewicz P. Art and science of life: designing and growing virtual plants with L-systems. In: International society for horticultural science (ISHS), Leuven, Belgium; 2004. p. 15–28. https://doi.org/10.17660/ActaHortic.2004.630.1

Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct Plant Biol. 2008;35(10):739–50.

Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C. OpenAlea: a visual programming and component-based software platform for plant modelling. Funct Plant Biol. 2008;35(10):751–60.

Benoit L, Rousseau D, Belin É, Demilly D, Chapeau-Blondeau F. Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms. Comput Electron Agric. 2014;104:84–92. https://doi.org/10.1016/j.compag.2014.04.001 .

Leitner D, Klepsch S, Bodner G, Schnepf A. A dynamic root system growth model based on L-Systems. Plant Soil. 2010;332(1):177–92. https://doi.org/10.1007/s11104-010-0284-7 .

Prusinkiewicz P, Hammel MS, Mjolsness E. Animation of plant development. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques. SIGGRAPH ’93. ACM, New York; 1993. p. 351–360. https://doi.org/10.1145/166117.166161 .

Prusinkiewicz PW, Remphrey WR, Davidson CG, Hammel MS. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems. Can J Bot. 1994;72(5):701–14. https://doi.org/10.1139/b94-091 .

Prusinkiewicz P, Mündermann L, Karwowski R, Lane B. The use of positional information in the modeling of plants. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. SIGGRAPH ’01. ACM, New York; 2001. p. 289–300. https://doi.org/10.1145/383259.383291 .

Mündermann, L., Erasmus, Y., Lane, B., Coen, E., Prusinkiewicz, P. Quantitative modeling of Arabidopsis development. Plant Physiol 2005;139(2):960–968. https://doi.org/10.1104/pp.105.060483 , http://www.plantphysiol.org/content/139/2/960.full.pdf .

Chen W, Wang H, Li Y, Su H, Wang Z, Tu C, Lischinski D, Cohen-Or D, Chen B. Synthesizing training images for boosting human 3D pose estimation. In: Proceedings-2016 4th international conference on 3D vision, 3DV 2016; 2016. p. 479–488. https://doi.org/10.1109/3DV.2016.58 , arxiv:1604.02703 .

Su H, Qi CR, Li Y, Guibas LJ. Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: The IEEE international conference on computer vision (ICCV); 2015. p. 2686–94.

Lobet G, Koevoets IT, Noll M, Meyer PE, Tocquin P, Pagès L, Périlleux C. Using a structural root system model to evaluate and improve the accuracy of root image analysis pipelines. Front Plant Sci. 2017;8:1–11. https://doi.org/10.3389/fpls.2017.00447 .

Minervini M, Fischbach A, Scharr H, Tsaftaris SA. Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn Lett. 2015;81:80–9. https://doi.org/10.1016/j.patrec.2015.10.013 .

De Vylder J, Vandenbussche F, Hu Y, Philips W, Van Der Straeten D. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiol. 2012;160(3):1149–59. https://doi.org/10.1104/pp.112.202762 .

Minervini M, Abdelsamea MM, Tsaftaris SA. Image-based plant phenotyping with incremental learning and active contours. Ecol Inf. 2014;23:35–48. https://doi.org/10.1016/j.ecoinf.2013.07.004 .

Hamuda E, Glavin M, Jones E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput Electron Agric. 2016;125:184–99. https://doi.org/10.1016/j.compag.2016.04.024 .

Zhu H, Meng F, Cai J, Lu S. Beyond pixels: a comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent. 2016;34:12–27. https://doi.org/10.1016/j.jvcir.2015.10.012 .

Virtual Laboratory. http://www.algorithmicbotany.org/virtual_laboratory/ . Accessed 01 Aug 2017.