The use of next generation sequencing for improving food safety: Translation into practice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afgan, 2016, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update, Nucleic Acids Res., 44, W3, 10.1093/nar/gkw343
Ajawatanawong, 2017, Molecular phylogenetics: concepts for a newcomer, Adv. Biochem. Eng. Biotechnol., 160, 185
Akhter, S., Aziz, R.K., Edwards, R.A., 2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res.. 40(16), e126. doi: 10.1093/nar/gks406.
Allard, M.W., Luo, Y., Strain, E., Pettengill, J., Timme, R., Wang, C., Li, C., Keys, C.E., Zheng, J., Stones, R., Wilson, M.R., Musser, S.M., Brown, E.W., 2013. On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS One 8(1), e55254. doi: 10.1371/journal.pone.0055254.
Allard, 2016, Practical value of food pathogen traceability through building a whole-genome sequencing network and database, J. Clin. Microbiol., 54, 1975, 10.1128/JCM.00081-16
Allard, 2017, Genomics of foodborne pathogens for microbial food safety, Curr. Opin. Biotechnol., 49, 224, 10.1016/j.copbio.2017.11.002
Amini, S., 2017. NGS in Food Safety: seeing what was not possible before. Food Safety Tech. Sept 20 2017. (https://foodsafetytech.com/feature_article/ngs-food-safety-seeing-never-possible/).
Angiuoli, 2008, Towards an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation, OMICS, 12, 137, 10.1089/omi.2008.0017
Argimón, S., Abudahab, K., Goater, R. J., Fedosejev, A., Bhai, J., Glasner, C., Feil, E.J., Holden, M.T., Yeats, C.A., Grundmann, H., Spratt, B.G., Aanensen, D.M., 2016. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2(11), e000093. doi: 10.1099/mgen.0.000093.
Ashton, P.M., Nair, S., Peters, T.M., Bale, J.A., Powell, D.G., Painset, A., Tewolde, R., Schaefer, U., Jenkins, C., Dallman, T.J., de Pinna, E.M., Grant, K.A., Salmonella Whole Genome Sequencing Implementation Group., 2016. Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ 4, e1752. doi: 10.7717/peerj.1752.
Aw, 2016, Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses, Int. J. Food Microbiol., 233, 50, 10.1016/j.ijfoodmicro.2016.02.008
Aziz, 2008, The RAST Server: rapid annotations using subsystems technology, BMC Genomics, 9, 75, 10.1186/1471-2164-9-75
Aziz, R.K., Devoid, S., Disz, T., Edwards, R.A., Henry, C.S., Olsen, G.J., Olson, R., Overbeek, R., Parrello, B., Pusch, G.D., Stevens, R.L., Vonstein, V., Xia, F., 2012. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7(10), e48053. doi: 10.1371/journal.pone.0048053.
Bag, 2016, An improved method for high quality metagenomics DNA extraction from human and environmental samples, Sci. Rep., 31, 26775, 10.1038/srep26775
Baker, 2006, Lineages of acidophilic archaea revealed by community genomic analysis, Science, 314, 1933, 10.1126/science.1132690
Bankevich, 2012, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 19, 455, 10.1089/cmb.2012.0021
Besser, 2018, Next-generation sequencing technologies and their application to the study and control of bacterial infections, Clin. Microbiol. Infect., 24, 335, 10.1016/j.cmi.2017.10.013
Biesbroek G, Sanders EAM, Roeselers G, Wang X, Caspers MPM, Trzciński K, et al. (2012) Deep sequencing analyses of low density microbial communities: working at the boundary of accurate microbiota detection. PloS One 7(3): e32942. doi.org/10.1371/journal.pone.0032942.
Bokulich, N.A., Rideout, J.R., Mercurio, W.G., Shiffer, A., Wolfe, B., Maurice, C.F., Dutton, R.J., Turnbaugh, P.J., Knight, R., Caporaso, J.G., 2016. mockrobiota: a public resource for microbiome bioinformatics benchmarking. mSystems 1(5), e00062-16. doi: 10.1128/mSystems.00062-16.
Bokulich, 2012, Next-generation approaches to the microbial ecology of food fermentations, BMB Rep., 45, 377, 10.5483/BMBRep.2012.45.7.148
Bolger, 2014, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114, 10.1093/bioinformatics/btu170
Bornich, 2016, Galaxy Portal: interacting with the galaxy platform through mobile devices, Bioinformatics, 32, 1743, 10.1093/bioinformatics/btw042
Bradley, 2015, Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis, Nat. Commun., 6, 10063, 10.1038/ncomms10063
Brown, 2017, The rise of genomics and the promise of whole genome sequencing for understanding microbial foodborne pathogens, 333
Callahan, 2016, DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581, 10.1038/nmeth.3869
Cao, 2017, A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies, Front. Microbiol., 8, 1829, 10.3389/fmicb.2017.01829
Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303
Carattoli, 2014, In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing, Antimicrob. Agents Chemother., 58, 3895, 10.1128/AAC.02412-14
Carriço, 2018, A primer on microbial bioinformatics for nonbioinformaticians, Clin. Microbiol. Infect., 24, 342, 10.1016/j.cmi.2017.12.015
Chaillou, 2015, Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage, ISME J., 9, 1105, 10.1038/ismej.2014.202
Chen, 2016, VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on, Nucleic Acids Res., 44, D694, 10.1093/nar/gkv1239
Chen, Y., Luo, Y., Carleton, H., Timme, R., Melka, D., Muruvanda, T., 2017. Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes associated with an outbreak linked to cheese, United States, 2013. Appl. Environ. Microbiol. 83(15), e00633-17. doi: 10.1128/AEM.00633-17.
Chevreux, 1999, Genome sequence assembly using trace signals and additional sequence information, Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB)., 99, 45
Chin, 2013, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods, 10, 563, 10.1038/nmeth.2474
Cifuentes, 2009, Food analysis and foodomics, J. Chromatogr. A, 1216, 7109, 10.1016/j.chroma.2009.09.018
Clooney, A.G., Fouhy, F., Sleator, R.D., O’ Driscoll, A., Stanton, C., Cotter, P.D., Claesson, M.J., 2016. Comparing apples and oranges?: next generation sequencing and its impact on microbiome analysis. PloS One 11(2), e01480281-16. doi: 10.1371/journal.pone.0148028.
Corcoll, 2017, Comparison of four DNA extraction methods for comprehensive assessment of 16S rRNA bacterial diversity in marine biofilms using high-throughput sequencing, FEMS Microbiol. Lett., 364, 10.1093/femsle/fnx139
Costea, 2017, Towards standards for human fecal sample processing in metagenomic studies, Nat. Biotechnol., 35, 1069, 10.1038/nbt.3960
Cottier, 2018, Advantages of meta-total RNA sequencing (MeTRS) over shotgun metagenomics and amplicon-based sequencing in the profiling of complex microbial communities, npj Biofilms Microbiomes, 4, 2, 10.1038/s41522-017-0046-x
Cunningham, 2017, Comparison of two whole-genome sequencing methods for analysis of three methicillin-resistant Staphylococcus aureus outbreaks, J. Clin. Microbiol., 55, 1946, 10.1128/JCM.00029-17
Dallman, T., Inns, T., Jombart, T., Ashton, P., Loman, N., Chatt, C., Messelhaeusser, U., Rabsch, W., Simon, S., Nikisins, S., Bernard, H., le Hello, S., Jourdan da-Silva, N., Kornschober, C., Mossong, J., Hawkey, P., de Pinna, E., Grant, K., Cleary, P., 2016. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network. Microb. Genom. 2(8), e000070. doi: 10.1099/mgen.0.000070.
Davis, S., Pettengill, J.B., Luo, Y., Payne, J., Shpuntoff, A., Rand, H., Strain, E., 2015. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Comput. Sci. 1, e20. doi: 10.7717/peerj-cs.20.
Deatherage, D.E., Kepner, J.L., Bennett, A.F., Lenski, R.E., Barrick, J.E., 2017. Specificity of genome evolution in experimental populations of <em>Escherichia coli</em> evolved at different temperatures. Proc. Natl. Acad. Sci. Unit. States Am.. 7;114(10):E1904 LP-E1912. doi: 10.1073/pnas.1616132114.
de Boer, 2015, Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores, Microbiome, 3, 30, 10.1186/s40168-015-0096-3
De Filippo, 2012, Bioinformatic approaches for functional annotation and pathway inference in metagenomics data, Briefings Bioinf., 13, 696, 10.1093/bib/bbs070
Deurenberg, 2017, Application of next generation sequencing in clinical microbiology and infection prevention, J. Biotechnol., 243, 16, 10.1016/j.jbiotec.2016.12.022
Edlund, 2016, Design of the MCAW compute service for food safety bioinformatics, IBM J. Res. Dev., 60, 7580716
Elson, R., Awofisayo-Okuyelu, A., Greener, T., Swift, C., Painset, A., Amar, C., Newton, A., Aird, H., Swindlehurst M., Elviss, N., Foster, K., Dallman, T. J., Ruggles, R., Grant, K.. Utility of WGS to describe the persistence and evolution of L. monocytogenes strains within crabmeat processing environments linked to outbreaks. J. Food Protect.. (Accepted for publication).
Ercolini, 2011, Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions, Appl. Environ. Microbiol., 77, 7372, 10.1128/AEM.05521-11
Ercolini, 2013, High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology, Appl. Environ. Microbiol., 79, 3148, 10.1128/AEM.00256-13
Eren, 2013, Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data, Methods Ecol. Evol., 4, 1111, 10.1111/2041-210X.12114
Eren, A.M., Borisy, G.G., Huse, S.M., Mark Welch, J.L., 2014. Oligotyping analysis of the human oral microbiome. Proc. Natl. Acad. Sci. U. S. A. 111, E2875-E287E2884. doi: 10.1073/pnas.1409644111.
Eren, 2015, Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences, ISME J., 9, 968, 10.1038/ismej.2014.195
Eren, A.M., Esen, O.C., Quince, C., Vineis, J.H., Morrison, H.G., Sogin, M.L., Delmont, T.O., 2015b. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3, e1319. doi: 10.7717/peerj.1319.
FAO, 2016
Faust, 2012, Microbial interactions: from networks to models, Nat. Rev. Microbiol., 10, 538, 10.1038/nrmicro2832
Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., Huttenhower, C., 2012. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8(7), e1002606. doi: 10.1371/journal.pcbi.1002606.
Feehery, G.R., Yigit, E., Oyola, S.O., Langhorst, B.W., Schmidt, V.T., Stewart, F.J., 2013. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One. 28;8(10):e76096–e76096. doi: 10.1371/journal.pone.0076096.
Ferrocino, 2017, Current perspectives in food-based studies exploiting multi-omics approaches, Curr. Opin. Food Sci., 13, 10, 10.1016/j.cofs.2017.01.002
Finn, 2016, The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res., 44, D279, 10.1093/nar/gkv1344
Forbes, 2017, Metagenomics: the next culture-independent game changer, Front. Microbiol., 8, 1069, 10.3389/fmicb.2017.01069
Franz, 2016, Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens, Curr. Opin. Food Sci., 8, 74, 10.1016/j.cofs.2016.04.004
Friedman, J., Alm, E.J., 2012. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8(9), e1002687. doi: 10.1371/journal.pcbi.1002687.
Galimberti, 2015, Emerging DNA-based technologies to characterize food ecosystems, Food Res. Int., 69, 424, 10.1016/j.foodres.2015.01.017
Gardner, 2015, kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome, Bioinformatics, 31, 2877, 10.1093/bioinformatics/btv271
Gargis, 2016, Assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories, J. Clin. Microbiol., 54, 2857, 10.1128/JCM.00949-16
Gerner-Smidt, 2013, 1059
Gillesberg Lassen, 2016, Two listeria outbreaks caused by smoked fish consumption-using whole-genome sequencing for outbreak investigations, Clin. Microbiol. Infect., 22, 620, 10.1016/j.cmi.2016.04.017
Goodwin, 2016, Coming of age: ten years of next-generation sequencing technologies, Nat. Rev. Genet., 17, 333, 10.1038/nrg.2016.49
Gosiewski, 2017, Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method - the observation of DNAemia, Eur. J. Clin. Microbiol. Infect. Dis., 36, 329, 10.1007/s10096-016-2805-7
Gosiewski, 2014, A novel, nested, multiplex, real-time PCR for detection of bacteria and fungi in blood, BMC Microbiol., 14, 144, 10.1186/1471-2180-14-144
Grant, 2018
Guidi, 2016, Plankton networks driving carbon export in the oligotrophic ocean, Nature, 532, 465, 10.1038/nature16942
Guindon, 2010, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 59, 307, 10.1093/sysbio/syq010
Hedge, J., Wilson, D.J., 2016. Practical approaches for detecting selection in microbial genomes. PLoS Comput. Biol. 12(2), e1004739. doi :10.1371/journal.pcbi.1004739.
Hoffmann, 2016, Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States, J. Infect. Dis., 213, 502, 10.1093/infdis/jiv297
Hong, 2016, Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine, Sci. Rep., 6, 26621, 10.1038/srep26621
Huang, A.D., Luo, C., Pena-Gonzalez, A., Weigand, M.R., Tarr, C.L., Konstantinidis, K.T., 2017. Metagenomics of two severe foodborne outbreaks provides diagnostic signatures and signs of coinfection not attainable by traditional methods. Appl. Environ. Microbiol. 83(3), pii: e02577-16. doi: 10.1128/AEM.02577-16.
Huerta-Cepas, 2016, eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Res., 44, D286, 10.1093/nar/gkv1248
Hultman, 2015, Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages, Appl. Environ. Microbiol., 81, 7088, 10.1128/AEM.02228-15
Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.J., Tappu, R., 2016. MEGAN Community Edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), e1004957. doi: 10.1371/journal.pcbi.1004957.
IBM., 2015. Consortium for Sequencing the Food Supply Chain: IBM Research and Mars Tackle Global Health with Food Safety Partnership, [online] Available: http://www.research.ibm.com/client-programs/foodsafety/.
Inouye, 2014, SRST2: rapid genomic surveillance for public health and hospital microbiology labs, Genome Med., 6, 90, 10.1186/s13073-014-0090-6
International Commission on Microbiological Specifications for Foods & Christian, J. H. B & Roberts, T. A., 1986, Microorganisms in Foods. 2, Sampling for Microbiological Analysis: Principles and Specific Applications/International Commission on Microbiological Specifications for Foods (ICMSF) of the International Union of Microbiological Societies., second ed., Blackwell Scientific Publications, Oxford, England. xiii:293.
IRIDA, 2017. IRIDA – Integrated Rapid Infectious Disease Analysis Project. Available at: http://irida.ca.
Jackson, 2016, Implementation of nationwide real-time whole-genome sequencing to enhance Listeriosis outbreak detection and investigation, Clin. Infect. Dis., 63, 380, 10.1093/cid/ciw242
Joensen, 2014, Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli, J. Clin. Microbiol., 52, 1501, 10.1128/JCM.03617-13
Jones, 2015, Library preparation methodology can influence genomic and functional predictions in human microbiome research, Proc. Natl. Acad. Sci. U. S. A, 112, 14024, 10.1073/pnas.1519288112
Josic, 2017, Use of foodomics for control of food processing and assessing of food safety, Adv. Food Nutr. Res., 81, 187, 10.1016/bs.afnr.2016.12.001
Jünemann, 2013, Updating benchtop sequencing performance comparison, Nat. Biotechnol., 31, 294, 10.1038/nbt.2522
Kable, M.E., Srisengfa, Y., Laird, M., Zaragoza, J., Mcleod, J., Heidenreich, J., Marco, M.L., 2016. The core and seasonal microbiota of raw bovine milk in tanker trucks and the impact of transfer to a milk processing facility. mBio 7(4), pii: e00836-16. doi: 10.1128/mBio.00836-16.
Kanehisa, 2000, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 28, 27, 10.1093/nar/28.1.27
Kanehisa, 2017, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res., 45, D353, 10.1093/nar/gkw1092
Katz, 2017, A comparative analysis of the Lyve-SET phylogenomics pipeline for genomic epidemiology of foodborne pathogens, Front. Microbiol., 8, 375, 10.3389/fmicb.2017.00375
Kearse, 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28, 1647, 10.1093/bioinformatics/bts199
Klenner, 2017, Comparing viral metagenomic extraction methods, Curr. Issues Mol. Biol., 24, 59, 10.21775/cimb.024.059
Kleta, 2017, Molecular tracing to find source of protracted invasive Listeriosis outbreak, Southern Germany, 2012-2016, Emerg. Infect. Dis., 23, 1680, 10.3201/eid2310.161623
Knudsen, B.E., Bergmark L., Munk, P., Lukjancenko, O., Priemé, A., Aarestrup, F.M., Pamp, S.J., 2016. Impact of sample type and DNA isolation procedure on genomic inference of microbiome composition. mSystems, 1(5). pii: e00095-16. doi: 10.1128/mSystems.00095-16.
Kodama, 2012, The sequence read archive: explosive growth of sequencing data, Nucleic Acids Res., 40, D54, 10.1093/nar/gkr854
Konstantinidis, 2005, Genomic insights that advance the species definition for prokaryotes, Proc. Natl. Acad. Sci. U. S. A, 102, 2567, 10.1073/pnas.0409727102
Koren, 2017, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res., 27, 722, 10.1101/gr.215087.116
Koser, C.U., Ellington, M.J., Cartwright, E.J.P., Gillespie, S.H., Brown, N.M., Farrington, M., Holden, M.T., Dougan, G., Bentley, S.D., Parkhill, J., Peacock, S.J., 2012. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog.. 8(8), e1002824. doi: 10.1371/journal.ppat.1002824.
Kovanen, 2016, Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing, Int. J. Food Microbiol., 226, 53, 10.1016/j.ijfoodmicro.2016.03.009
Kozyreva, 2017, Validation and implementation of clinical laboratory improvements act-compliant whole-genome sequencing in the public health microbiology laboratory, J. Clin. Microbiol., 55, 2502, 10.1128/JCM.00361-17
Kultima, 2016, MOCAT2: a metagenomic assembly, annotation and profiling framework, Bioinformatics, 32, 2520, 10.1093/bioinformatics/btw183
Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11(5), e1004226. doi: 10.1371/journal.pcbi.1004226.
Kvistholm Jensen, 2016, Whole-genome sequencing used to investigate a nationwide outbreak of listeriosis caused by ready-to-eat delicatessen meat, Denmark, 2014, Clin. Infect. Dis., 63, 64, 10.1093/cid/ciw192
Lan, 2017, SiC-Seq: single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding, Nat. Biotechnol., 35, 640, 10.1038/nbt.3880
Leonard, 2015, Application of metagenomic sequencing to food safety: detection of Shiga Toxin-producing Escherichia coli on fresh bagged spinach, Appl. Environ. Microbiol., 81, 8183, 10.1128/AEM.02601-15
Leonard, S.R., Mammel, M.K., Lacher, D.W., Elkins, C.A., 2016. Strain-level discrimination of shiga toxin-producing Escherichia coli in spinach using metagenomic sequencing. PLoS One. 11(12), e0167870. doi: 10.1371/journal.pone.0167870.
Lewandowska, 2017, Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples, Microbiome, 5, 94, 10.1186/s40168-017-0317-z
Li, 2009, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754, 10.1093/bioinformatics/btp324
Li, 2011, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, Bioinformatics, 27, 2987, 10.1093/bioinformatics/btr509
Li, 2017, Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform, Nucleic Acids Res., 45, 67, 10.1093/nar/gkw1027
Lienau, 2011, Identification of a salmonellosis outbreak by means of molecular sequencing, N. Engl. J. Med., 364, 981, 10.1056/NEJMc1100443
Liu, 2016, Sequencing-based screening of functional microorganism to decrease the formation of biogenic amines in Chinese rice wine, Food Contr., 64, 98, 10.1016/j.foodcont.2015.12.013
Loman, 2013, A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4, J. Am. Med. Assoc., 309, 1502, 10.1001/jama.2013.3231
Loman, N.J., Pallen, M.J., 2015. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 13(12), 787-794. doi: 10.1038/nrmicro3565.
Lo, 2014, Rapid evaluation and quality control of next generation sequencing data with FaQCs, BMC Bioinf., 15, 366, 10.1186/s12859-014-0366-2
Luo, C., Knight, R., Siljander, H., Knip, M., Xavier, R. J., Gevers, D., 2015. ConStrains identifies microbial strains in metagenomic datasets. Nat. Biotechnol. 33, 1045-1052. doi: 10.1038/nbt.3319.
Lusk, 2012, Characterization of microflora in Latin-style cheeses by next-generation sequencing technology, BMC Microbiol., 12, 254, 10.1186/1471-2180-12-254
Maiden, 2013, MLST revisited: the gene-by-gene approach to bacterial genomics, Nat. Rev. Microbiol., 11, 728, 10.1038/nrmicro3093
Marder, 2017, Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance -foodborne diseases active surveillance network, 10 U.S. Sites, 2013-2016, MMWR Morb. Mortal. Wkly. Rep., 66, 397, 10.15585/mmwr.mm6615a1
Mars., 2015. IBM Research and Mars, Inc. Launch Pioneering Effort to Drive Advances in Global Food Safety, [Online] Available: http://www.mars.com/nordics/en/press-center/press-list/news-releases.aspx?SiteId=94&Id=6369.
Masoud, 2012, The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR, Int. J. Food Microbiol., 153, 192, 10.1016/j.ijfoodmicro.2011.11.014
Maury, 2016, Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nat. Genet., 48, 308, 10.1038/ng.3501
Mayo, 2014, Impact of next generation sequencing techniques in food microbiology, Curr. Genom., 15, 293, 10.2174/1389202915666140616233211
Meyer, 2008, The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes, BMC Bioinf., 9, 386, 10.1186/1471-2105-9-386
Moran-Gilad, 2015, Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities, BMC Infect. Dis., 15, 174, 10.1186/s12879-015-0902-3
Moriya, 2007, KAAS: an automatic genome annotation and pathway reconstruction server, Nucleic Acids Res., 35, W182, 10.1093/nar/gkm321
Moura, 2016, Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat. Microbiol., 2, 16185, 10.1038/nmicrobiol.2016.185
Nadon, C., Van Valle, I., Gerner-Smidt, P., Campos, J., Chinen, I., Concepcion-Acevedo, J., Gilpin, B., Smith, A.M., Man Kam, K., Perez, E., Trees, E., Kubota, K., Takkinen, J., Nielsen, E.M., Carleton, H., FWD-NEXT Expert Panel, 2017. PulseNet International: vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill.. 22(23), pii 30544. doi: 10.2807/1560-7917.ES.2017.22.23.30544.
Narayanasamy, 2016, IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses, Genome Biol., 17, 260, 10.1186/s13059-016-1116-8
Nascimento, 2017, PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods, Bioinformatics, 33, 128, 10.1093/bioinformatics/btw582
Nguyen, 2016, A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity, NPJ Biofilms Microbiomes, 2, 16004, 10.1038/npjbiofilms.2016.4
Ni, J., Yan, Q., Yu, Y., 2013. How much metagenomic sequencing is enough to achieve a given goal? Sci. Rep.. 11;3:1968. doi : 10.0.4.14/srep01968.
Olson, 2017, Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes, Brief. Bioinform., bbx09
Ottesen, 2016, Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak, BMC Microbiol., 16, 275, 10.1186/s12866-016-0894-1
Overbeek, 2005, The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes, Nucleic Acids Res., 33, 5691, 10.1093/nar/gki866
Page, 2017, Comparison of multi-locus sequence typing software for next generation sequencing data, Microb. Genom., 10.1099/mgen.0.000124
Paillart, 2016, Bacterial population dynamics and sensorial quality loss in modified atmosphere packed fresh-cut iceberg lettuce, Postharvest Biol. Technol., 124, 91, 10.1016/j.postharvbio.2016.10.008
Panek, 2018, Methodology challenges in studying human gut microbiota – effects of collection, storage, DNA extraction and next generation sequencing technologies, Sci. Rep., 8, 5143, 10.1038/s41598-018-23296-4
Parente, 2016, FoodMicrobionet: a database for the visualisation and exploration of food bacterial communities based on network analysis, Int. J. Food Microbiol., 219, 28, 10.1016/j.ijfoodmicro.2015.12.001
Parks, D.H., Mankowski, T., Zangooei, S., Porter, M.S., Armanini, D.G., Baird, D.J., Langille, M.G., Beiko, R.G., 2013. GenGIS 2: geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS One 8(7), e69885. doi: 10.1371/journal.pone.0069885.
Parks, 2015, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 25, 1043, 10.1101/gr.186072.114
Pightling, 2015, Choice of reference-guided sequence assembler and SNP caller for analysis of Listeria monocytogenes short-read sequence data greatly influences rates of error, BMC Res. Notes, 8, 748, 10.1186/s13104-015-1689-4
Pightling, 2018, Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations, Front. Microbiol., 9, 1482, 10.3389/fmicb.2018.01482
Pires, 2009, Attributing the human disease burden of foodborne infections to specific sources, Foodb. Pathog. Dis., 6, 417, 10.1089/fpd.2008.0208
Ponstingl, 2010
Portmann, 2018, A validation approach of an end-to-end whole genome sequencing workflow for source tracking of Listeria monocytogenes and Salmonella enterica, Front. Microbiol., 14, 446, 10.3389/fmicb.2018.00446
Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5(3), e9490. doi: 10.1371/journal.pone.0009490.
Quainoo, 2017, Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis, Clin. Microbiol. Rev., 30, 1015, 10.1128/CMR.00016-17
Quigley, L., O'Sullivan, D. J., Daly, D., O'Sullivan, O., Burdikova, Z., Vana, R., Beresford, T.P., Ross, R.P., Fitzgerald, G.F., McSweeney, P.L., Giblin, L., Sheehan, J.J., Cotter, P.D., 2016. Thermus and the pink discoloration defect in cheese. mSystems. 1(3), pii e00023-16. doi: 10.1128/mSystems.00023-16.
Raes, 2008, Molecular eco-systems biology: towards an understanding of community function, Nat. Rev. Microbiol., 6, 693, 10.1038/nrmicro1935
Ram, R.J., Verberkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., Blake R.C. 2nd, Hettich, R.L., Banfield, J.F., 2005. Community proteomics of a natural microbial biofilm. Science 308(5730), 1915-1920. doi: 10.1126/science. 1109070.
Rantsiou, K., Kathariou, S., Winkler, A., Skandamis, P., Saint-Cyr, M.J., Rouzeau-Szynalski, K., Amézquita, A., 2017. Next generation microbiological risk assessment: opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. Int. J. Food Microbiol. (in press). doi: 10.1016/j.ijfoodmicro.2017.11.007.
Rosen, 2012, Denoising PCR-amplified metagenome data, BMC Bioinf., 13, 283, 10.1186/1471-2105-13-283
Schirmer, M., Ijaz, U.Z., D'Amore, R., Hall, N., Sloan, W.T., Quince, C., 2015. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res.. 43(6), e37. doi: 10.1093/nar/gku1341.
Schlaberg, 2017, Validation of metagenomic next-generation sequencing tests for universal pathogen detection, Arch. Pathol. Lab Med., 141, 776, 10.5858/arpa.2016-0539-RA
Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09
Schürch, 2018, Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches, Clin. Microbiol. Infect., 24, 350, 10.1016/j.cmi.2017.12.016
Seemann, 2014, Prokka: rapid prokaryotic genome annotation, Bioinformatics, 30, 2068, 10.1093/bioinformatics/btu153
Segata, 2013, Computational meta'omics for microbial community studies, Mol. Syst. Biol., 9, 666, 10.1038/msb.2013.22
Sekse, 2017, High throughput sequencing for detection of foodborne pathogens, Front. Microbiol., 8, 2029, 10.3389/fmicb.2017.02029
Shokralla, 2014, Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens, Mol. Ecol. Resour., 14, 892, 10.1111/1755-0998.12236
Siegwald, L., Touzet, H., Lemoine, Y., Hot, D., Audebert, C., Caboche, S., 2017. Assessment of common and emerging bioinformatics pipelines for targeted metagenomics. PLoS One 12(1), e0169563. doi: 10.1371/journal.pone.0169563.
Singer, 2016, Next generation sequencing data of a defined microbial mock community, Sci. Data., 3, 160081, 10.1038/sdata.2016.81
Slatko, 2018, Overview of next-generation sequencing technologies, Curr. Protoc. Mol. Biol., 122, e59, 10.1002/cpmb.59
Spencer, 2015, Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers, ISME J., 10, 427, 10.1038/ismej.2015.124
Stamatakis, 2014, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033
Stead, 2013, Accurately identifying low-allelic fraction variants in single samples with next-generation sequencing: applications in tumor subclone resolution, Hum. Mutat., 34, 1432, 10.1002/humu.22365
Taboada, 2017, Food safety in the age of next generation sequencing, bioinformatics, and open data access, Front. Microbiol., 8, 909, 10.3389/fmicb.2017.00909
Takami, 2016, An automated system for evaluation of the potential functionome: MAPLE version 2.1.0, DNA Res., 23, 467, 10.1093/dnares/dsw030
The National Human Research Institute, 2017. https://www.genome.gov/images/content/costpergenome_2017.jpg.
Thepault, A., Méric, G., Rivoal, K., Pascoe, B., Mageiros, L., Touzain, F., Rose, V., Béven, V., Chemaly, Sheppard, S. 2017. Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni. Appl. Environ. Microbiol., 83 (7), e03085-16.
Timme, R.E., Rand, H., Shumway, M., Trees, E.K., Simmons, M., Agarwala, R., Davis, S., Tillman, G.E., Defibaugh-Chavez, S., Carleton, H.A., Klimke, W.A., Katz, L.S., 2017. Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance. PeerJ 5, e3893. doi: 10.7717/peerj.3893.
Treangen, 2013, MetAMOS: a modular and open source metagenomic assembly and analysis pipeline, Genome Biol., 14, R2, 10.1186/gb-2013-14-1-r2
Tremblay, 2015, Primer and platform effects on 16S rRNA tag sequencing, Front. Microbiol., 6, 771, 10.3389/fmicb.2015.00771
Truong, 2017, Microbial strain-level population structure and genetic diversity from metagenomes, Genome Res., 27, 626, 10.1101/gr.216242.116
Tyson, 2004, Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, 428, 37, 10.1038/nature02340
Vaidya, 2018, The effect of DNA extraction methods on observed microbial communities from fibrous and liquid rumen fractions of dairy cows, Front. Microbiol., 92, 10.3389/fmicb.2018.00092
Van Hoorde, 2018, Use of next‐generation sequencing in microbial risk assessment, EFSA Journal, 16
Venter, 2004, Environmental genome shotgun sequencing of the Sargasso Sea, Science, 304, 66, 10.1126/science.1093857
Waldor, M.K., Tyson, G., Borenstein, E., Ochman, H., Moeller, A., Finlay, B.B., Kong, H.H., Gordon, J.I., Nelson, K.E., Dabbagh, K., Smith, H., 2015. Where next for microbiome research? PLoS Biol.. 13(1), e1002050. doi: 10.1371/journal.pbio.1002050.
Walsh, 2017, Translating omics to food microbiology, Annu. Rev. Food Sci. Technol., 8, 113, 10.1146/annurev-food-030216-025729
Wang, 2018, J. Food Protect.
Warnecke, 2007, Building on basic metagenomics with complementary technologies, Genome Biol., 8, 231, 10.1186/gb-2007-8-12-231
Weimer, B.C., Storey, D.B., Elkins, C.A., Baker, R.C., Markwell, P., Chambliss, D.D., Edlund, S.B., Kaufman, J.H., 2016. Defining the food microbiome for authentication, safety, and process management. IBM J. Res. Dev., 60(5–6), 1:1-1:13. doi: 10.1147/JRD.2016.2582598.
Weiss, 2016, Correlation detection strategies in microbial data sets vary widely in sensitivity and precision, ISME J., 10, 1669, 10.1038/ismej.2015.235
Welser, J., 2015. Sequencing the Food Supply Chain: How a New Consortium Will Improve Food Safety. Forbes BrandVoice® [online] Available: http://www.forbes.com/sites/ibm/2015/01/29/sequencing-the-food-supply-chain-how-a-new-consortium-will-improve-food-safety/" \h.
Wilke, 2016, The MG-RAST metagenomics database and portal in 2015, Nucleic Acids Res., 44, D590, 10.1093/nar/gkv1322
Wilson, M.R., Brown, E., Keys, C., Strain, E, Luo, Y., Muruvanda, T., Grim, C., Jean-Gilles Beaubrun, J., Jarvis, K., Ewing, L., Gopinath, G., Hanes, D., Allard, M.W., Musser, S., 2016. Whole genome DNA sequence analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks. PloS One 11(6), e0146929. doi: 10.1371/journal.pone.0146929.
Wolfe, 2014, Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity, Cell, 158, 422, 10.1016/j.cell.2014.05.041
Wyres, 2014, WGS analysis and interpretation in clinical and public health microbiology laboratories: what are the requirements and how do existing tools compare?, Pathogens, 3, 437, 10.3390/pathogens3020437
Xia, 2011, Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates, BMC Syst. Biol., 5, S15, 10.1186/1752-0509-5-S2-S15
Yahara, 2017, Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork, Environ. Microbiol., 19, 361, 10.1111/1462-2920.13628
Yang, 2012, Molecular phylogenetics: principles and practice, Nat. Rev. Genet., 13, 303, 10.1038/nrg3186
Yang, 2016, Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain, Appl. Environ. Microbiol., 82, 2433, 10.1128/AEM.00078-16
Yuan, S., Cohen, D.B., Ravel, J., Abdo, Z., Forney, L.J., 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One. 7(3), e33865. doi: 10.1371/journal.pone.0033865.
Zankari, 2012, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother., 67, 2640, 10.1093/jac/dks261
Zarraonaindia, I., Owens, S.M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., Bokulich, N.A,, Mills, D.A., Martin, G., Taghavi, S., van der Lelie, D., Gilbert, J.A., 2015. The soil microbiome influences grapevine-associated microbiota. mBio. 6(2), pii e02527-14. doi: 10.1128/mBio.02527-14.
Zerbino, 2008, Velvet: algorithms for the novo short read assembly using the Bruijn graphs, Genome Res., 18, 821, 10.1101/gr.074492.107
Zhao, 2013, Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers, Appl. Environ. Microbiol., 79, 5652, 10.1128/AEM.00949-13