The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain

Jarred Younger1, Luke Parkitny2, David McLain3
1Stanford University, Stanford, CA, USA
2Department of Anesthesia, Pain and Perioperative Medicine, Stanford University, 1070 Arastradero Road, Suite 200, Palo Alto, CA, 94304, USA
3McLain Medical Associates, Birmingham, AL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Greeley JD, Lê AD, Poulos CX, Cappell H (1988) "Paradoxical" analgesia induced by naloxone and naltrexone. Psychopharmacology (Berlin) 96(1):36–39

Burns LH, Wang HY (2010) Ultra-low-dose naloxone or naltrexone to improve opioid analgesia: the history, the mystery and a novel approach clinical medicine insights

Davis M, Goforth HW, Gamier P (2013) Oxycodone combined with opioid receptor antagonists: efficacy and safety. Expert Opin Drug Saf 12(3):389–402

Resnick RB, Volavka J, Freedman AM, Thomas M (1974) Studies of EN-1639A (naltrexone): a new narcotic antagonist. Am J Psychiatry 131(6):646–650

Verebey K, Mulé SJ (1975) Naltrexone pharmacology, pharmacokinetics, and metabolism: current status. Am J Drug Alcohol Abuse 2(3–4):357–363

Gold MS, Dackis CA, Pottash AL, Sternbach HH, Annitto WJ, Martin D, Dackis MP (1982) Naltrexone, opiate addiction, and endorphins. Med Res Rev 2(3):211–246

Smith JP, Bingaman SI, Ruggiero F, Mauger DT, Mukherjee A, McGovern CO, Zagon IS (2011) Therapy with the opioid antagonist naltrexone promotes mucosal healing in active Crohn’s disease: a randomized placebo-controlled trial. Dig Dis Sci 56(7):2088–2097

Cree BA, Kornyeyeva E, Goodin DS (2010) Pilot trial of low-dose naltrexone and quality of life in multiple sclerosis. Ann Neurol 68(2):145–150

Younger J, Noor N, McCue R, Mackey S (2013) Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis Rheum 65(2):529–538

Bihari B (2013) Bernard Bihari, MD: low-dose naltrexone for normalizing immune system function. Altern Ther Health Med 19(2):56–65

Zagon IS, McLaughlin PJ (1989) Opioid antagonist modulation of murine neuroblastoma: a profile of cell proliferation and opioid peptides and receptors. Brain Res 480(1–2):16–28

Smith JP, Stock H, Bingaman S, Mauger D, Rogosnitzky M, Zagon IS (2007) Low-dose naltrexone therapy improves active Crohn’s disease. Am J Gastroenterol 102(4):820–828

Clauw DJ, Arnold LM, McCarberg BH, FibroCollaborative (2011) The science of fibromyalgia. Mayo Clin Proc 86(9):907–911

Wallace DJ (2006) Is there a role for cytokine based therapies in fibromyalgia. Curr Pharm Des 12(1):17–22

Younger J, Mackey S (2009) Fibromyalgia symptoms are reduced by low-dose naltrexone: a pilot study. Pain Med 10(4):663–672

Wang D, Sun X, Sadee W (2007) Different effects of opioid antagonists on mu-, delta-, and kappa-opioid receptors with and without agonist pretreatment. J Pharmacol Exp Ther 321(2):544–552

Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF (2007) Norman cousins lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 21(2):131–146

McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216(Pt 1):84–98

Dantzer R (2007) Twenty years of research on cytokine-induced sickness behavior Brain, behavior, and immunity

Kelley KW, Bluthé RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, Broussard SR (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17(Suppl 1):S112–S118

Wieseler-Frank J, Maier SF, Watkins LR (2005) Immune-to-brain communication dynamically modulates pain: physiological and pathological consequences. Brain Behav Immun 19(2):104–111

Hutchinson MR et al (2008) Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 28(1):20–29

Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293(2):607–617

Chang RC, Rota C, Glover RE, Mason RP, Hong JS (2000) A novel effect of an opioid receptor antagonist, naloxone, on the production of reactive oxygen species by microglia: a study by electron paramagnetic resonance spectroscopy. Brain Res 854(1–2):224–229

Liu SL, Li YH, Shi GY, Chen YH, Huang CW, Hong JS, Wu HL (2006) A novel inhibitory effect of naloxone on macrophage activation and atherosclerosis formation in mice. J Am Coll Cardiol 48(9):1871–1879

Valentino RJ, Katz JL, Medzihradsky F, Woods JH (1983) Receptor binding, antagonist, and withdrawal precipitating properties of opiate antagonists. Life Sci 32(25):2887–2896

Lewis SS, Loram LC, Hutchinson MR, Li CM, Zhang Y, Maier SF, Huang Y, Rice KC, Watkins LR (2012) (+)-naloxone, an opioid-inactive toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain 13(5):498–506

Stevens CW, Aravind S, Das S, Davis RL (2013) Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol 168(6):1421–1429

Fukagawa H, Koyama T, Kakuyama M, Fukuda K (2013) Microglial activation involved in morphine tolerance is not mediated by toll-like receptor 4. J Anesth 27(1):93–97

Block L, Björklund U, Westerlund A, Jörneberg P, Biber B, Hansson E (2013) A new concept affecting restoration of inflammation-reactive astrocytes. Neuroscience 250:536–545

Wang Q, Zhou H, Gao H, Chen SH, Chu CH, Wilson B, Hong JS (2012) Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase. J Neuroinflammation 9:32

Zagon IS, Verderame MF, McLaughlin PJ (2002) The biology of the opioid growth factor receptor (OGFr). Brain Res Brain Res Rev 38(3):351–376

Sharma R, Rauchhaus M, Ponikowski PP, Varney S, Poole-Wilson PA, Mann DL, Coats AJ, Anker SD (2000) The relationship of the erythrocyte sedimentation rate to inflammatory cytokines and survival in patients with chronic heart failure treated with angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 36(2):523–528

García JJ, Cidoncha A, Bote ME, Hinchado MD, Ortega E (2013) Altered profile of chemokines in fibromyalgia patients. Ann Clin Biochem 6(7):425–435

Xiao Y, Haynes WL, Michalek JE, Russell IJ (2013) Elevated serum high-sensitivity C-reactive protein levels in fibromyalgia syndrome patients correlate with body mass index, interleukin-6, interleukin-8, erythrocyte sedimentation rate. Rheumatol Int 33(5):1259–1264

Smith JP, Field D, Bingaman SI, Evans R, Mauger DT (2013) Safety and tolerability of low-dose naltrexone therapy in children with moderate to severe Crohn’s disease: a pilot study. J Clin Gastroenterol 47(4):339–345

Sharafaddinzadeh N, Moghtaderi A, Kashipazha D, Majdinasab N, Shalbafan B (2010) The effect of low-dose naltrexone on quality of life of patients with multiple sclerosis: a randomized placebo-controlled trial. Mult Scler 16(8):964–969

Chopra P, Cooper MS (2013) Treatment of complex regional pain syndrome (CRPS) using low dose naltrexone (LDN). J Neuroimmune Pharm 8(3):470–476

Parkitny L, McAuley JH, Di Pietro F, Stanton TR, O’Connell NE, Marinus J, van Hilten JJ, Moseley GL (2013) Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 80(1):106–117

Brown N, Panksepp J (2009) Low-dose naltrexone for disease prevention and quality of life. Med Hypotheses 72(3):333–337

Tempel A, Gardner EL, Zukin RS (1985) Neurochemical and functional correlates of naltrexone-induced opiate receptor up-regulation. J Pharmacol Exp Ther 232(2):439–444

Zagon IS, McLaughlin PJ (1995) Gene-peptide relationships in the developing rat brain: the response of preproenkephalin mRNA and [Met5]-enkephalin to acute opioid antagonist (naltrexone) exposure. Brain Res Mol Brain Res 33(1):111–120

Donahue RN, McLaughlin PJ, Zagon IS (2011) Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model. Exp Biol Med (Maywood) 236(9):1036–1050

Kayser V, Besson JM, Guilbaud G (1987) Paradoxical hyperalgesic effect of exceedingly low doses of systemic morphine in an animal model of persistent pain (Freund’s adjuvant-induced arthritic rats). Brain Res 414(1):155–157

Galeotti N, Stefano GB, Guarna M, Bianchi E, Ghelardini C (2006) Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain 123(3):294–305

Physicians’ Desk Reference 2013 (67th ed) Montvale, NJ: PDR

Pini LA, Ferretti C, Trenti T, Ferrari A, Sternieri E (1991) Effects of long-term treatment with naltrexone on hepatic enzyme activity. Drug Metabol Drug Interact 9(2):161–174

Zagon IS, Donahue R, McLaughlin PJ (2013) Targeting the opioid growth factor: opioid growth factor receptor axis for treatment of human ovarian cancer. Exp Biol Med (Maywood) 238(5):579–587

Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135(Pt 4):1224–1236

Zhou Q, Price DD, Callam CS, Woodruff MA, Verne GN (2011) Effects of the N-methyl-D-aspartate receptor on temporal summation of second pain (wind-up) in irritable bowel syndrome. J Pain 12(2):297–303

Swift RM (2013) Naltrexone and nalmefene: any meaningful difference? Biol Psychiatry 73(8):700–701

Tang C, Godfrey T, Stawell R, Nikpour M (2012) Hydroxychloroquine in lupus: emerging evidence supporting multiple beneficial effects. Int Med J 42(9):968–978

Steere AC, Angelis SM (2006) Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum 54(10):3079–3086

Choi DK, Koppula S, Suk K (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16(2):1021–1043

Moore A, Wilkinson S (2009) The promise of low dose naltrexone. McFarland, North Carolina