The use of cIMT as a predictor of postoperative stroke in patients undergoing surgical repair of acute type a aortic dissection

Journal of Cardiothoracic Surgery - Tập 15 - Trang 1-8 - 2020
Kai Zhang1, Si-Chong Qian1, Xu-Dong Pan1, Song-Bo Dong1, Jun Zheng1, Hong Liu2, Yue-Li Wang3, Li-Zhong Sun1
1Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
2Department of Cardiothoracic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
3Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China

Tóm tắt

Acute type A aortic dissection (ATAAD) is a life-threatening condition that requires surgical intervention. Stroke remains an extremely serious adverse outcome that can occur in ATAAD patients undergoing aortic arch repair, leading to higher rates of patient mortality and decreased postoperative quality of life. In the present study, we sought to determine whether carotid intima–media thickness (cIMT) is a reliable predictor of postoperative stroke risk. This was a prospective study of 76 patients with ATAAD undergoing aortic arch repair. For all patients, cIMT was determined preoperatively through a Doppler-based method. Incidence of different forms of neurological dysfunction, including temporary neurological dysfunction (TND) and stroke, was monitored in these patients, and the relationship between cIMT and stroke incidence was assessed using a receiver-operating characteristic (ROC) curve. Prognostic variables associated with stroke risk were further identified through univariate and multivariate analyses. A total of 26/76 (34.2%) patients in the present study suffered from neurological dysfunction, of whom 16 (21.0%) suffered from TND and 10 (13.2%) suffered a stroke. The remaining 50 patients (65.8%) did not suffer from neurological dysfunction. The cIMT values in the stroke, TND, and neurological dysfunction-free patients in this study were 1.12 ± 0.19 (mm), 0.99 ± 0.13 (mm), and 0.87 ± 0.13 (mm), respectively. A total of 4 patients in this cohort died during the study, including 1 in the TND group and 3 in the stroke group. An ROC curve analysis indicated that cIMT could predict stroke with an area under the curve value of 0.844 (95% CI, 0.719–0.969; p < 0.001). A multivariate analysis revealed that cIMT > 0.9 mm was independently associated with stroke risk (p = 0.018). We found that cIMT can be used to predict postoperative stroke risk in ATAAD patients undergoing aortic arch repair, with a cIMT > 0.9 mm coinciding with increased stroke risk in these patients. ChiCTR1900022289. Date of registration 4 April 2019 retrospectively registered.

Tài liệu tham khảo

Ghoreishi M, Sundt TM, Cameron DE, Holmes SD, Roselli EE, Pasrija C, Gammie JS, Patel HJ, Bavaria JE, Svensson LG, et al. Factors associated with acute stroke after type a aortic dissection repair: an analysis of the Society of Thoracic Surgeons National Adult Cardiac Surgery Database. J Thorac Cardiovasc Surg. 2019. https://doi.org/10.1016/j.jtcvs.2019.06.016. [Epub ahead of print]. Sun LZ, Qi RD, Zhu JM, Liu YM, Zheng J. Total arch replacement combined with stented elephant trunk implantation: a new “standard” therapy for type a dissection involving repair of the aortic arch? Circulation. 2011;123(9):971–8. Preventza O, Coselli JS, Garcia A, Kashyap S, Akvan S, Simpson KH, Price MD, Bakaeen FG, Cornwell LD, Omer S, et al. Moderate hypothermia at warmer temperatures is safe in elective proximal and total arch surgery: results in 665 patients. J Thorac Cardiovasc Surg. 2017;153(5):1011–8. Krüger T, Weigang E, Hoffmann I, Blettner M, Aebert H. Cerebral protection during surgery for acute aortic dissection type a: results of the German registry for acute aortic dissection type a (GERAADA). Circulation. 2011;124(4):434–43. Goossens D, Schepens M, Hamerlijnck R, Hartman M, Suttorp MJ, Koomen E, Vermeulen F. Predictors of hospital mortality in type A aortic dissections: a retrospective analysis of 148 consecutive surgical patients. Cardiovasc Surg (London, England). 1998;6(1):76–80. Immer FF, Lippeck C, Barmettler H, Berdat PA, Eckstein FS, Kipfer B, Saner H, Schmidli J, Carrel TP. Improvement of quality of life after surgery on the thoracic aorta: effect of antegrade cerebral perfusion and short duration of deep hypothermic circulatory arrest. Circulation. 2004;110(11 Suppl 1):II250–5. Reich DL, Uysal S, Sliwinski M, Ergin MA, Kahn RA, Konstadt SN, McCullough J, Hibbard MR, Gordon WA, Griepp RB. Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J Thorac Cardiovasc Surg. 1999;117(1):156–63. Nambi V, Pedroza C, Kao LS. Carotid intima-media thickness and cardiovascular events. Lancet. 2012;379(9831):2028–30. Polak JF, Pencina MJ, Pencina KM, O'Donnell CJ, Wolf PA, D'Agostino RB Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365(3):213–21. Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the carotid atherosclerosis progression study (CAPS). Stroke. 2006;37(1):87–92. WG MA, Zheng J, Liu YM, Zhu JM, Sun LZ. Dr. Sun’s procedure for type a aortic dissection: Total arch replacement using Tetrafurcate graft with stented elephant trunk implantation. Aorta. 2013;1(1):59–64. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. Kernan WN, Viscoli CM, Brass LM, Broderick JP, Brott T, Feldmann E, Morgenstern LB, Wilterdink JL, Horwitz R. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med. 2000;343(25):1826–32. Livesay JJ, Cooley DA, Duncan JM, Ott DA, Walker WE, Reul GJ. Open aortic anastomosis: improved results in the treatment of aneurysms of the aortic arch. Circulation. 1982;66(2 Pt 2):I122–7. Lansman SL, Raissi S, Ergin MA, Griepp RB. Urgent operation for acute transverse aortic arch dissection. J Thorac Cardiovasc Surg. 1989;97(3):334–41. Di Eusanio M, Trimarchi S, Patel HJ, Hutchison S, Suzuki T, Peterson MD, Di Bartolomeo R, Folesani G, Pyeritz RE, Braverman AC, et al. Clinical presentation, management, and short-term outcome of patients with type a acute dissection complicated by mesenteric malperfusion: observations from the international registry of acute aortic dissection. J Thorac Cardiovasc Surg. 2013;145(2):385–90 e381. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, Volcik K, Boerwinkle E, Ballantyne CM. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (atherosclerosis risk in communities) study. J Am Coll Cardiol. 2010;55(15):1600–7. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N Engl J Med. 1999;340(1):14–22. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam study. Circulation. 1997;96(5):1432–7. Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C, Hildebrandt P, Olsen MH. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J. 2010;31(7):883–91. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JM, Kushner FG, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2010;122(25):2748–64. Di Eusanio M, Berretta P, Cefarelli M, Castrovinci S, Folesani G, Alfonsi J, Pantaleo A, Murana G, Di Bartolomeo R. Long-term outcomes after aortic arch surgery: results of a study involving 623 patients. Eur J Cardiothorac Surg. 2015;48(3):483–90. Ehrlich MP, Ergin MA, McCullough JN, Lansman SL, Galla JD, Bodian CA, Apaydin AZ, Griepp RB. Predictors of adverse outcome and transient neurological dysfunction after ascending aorta/hemiarch replacement. Ann Thorac Surg. 2000;69(6):1755–63. Liu H, Chang Q, Zhang H, Yu C. Predictors of adverse outcome and transient neurological dysfunction following aortic arch replacement in 626 consecutive patients in China. Heart Lung Circ. 2017;26(2):172–8. Ehrlich MP, Schillinger M, Grabenwoger M, Kocher A, Tschernko EM, Simon P, Bohdjalian A, Wolner E. Predictors of adverse outcome and transient neurological dysfunction following surgical treatment of acute type a dissections. Circulation. 2003;108(Suppl 1):II318–23.