The ultraviolet photodissociation of Cl2O at 235 nm and of HOCl at 235 and 266 nm

Journal of Chemical Physics - Tập 109 Số 4 - Trang 1315-1323 - 1998
Yoshiki Tanaka1, Masahiro Kawasaki1, Yutaka Matsumi2, Hisashi Fujiwara3, Takashi Ishiwata3, Leon J. Rogers4, Richard N. Dixon4, Michael N. R. Ashfold4
1Department of Molecular Engineering, Kyoto University, Kyoto 606-01, Japan
2Solar Terrestrial Environmental Laboratory, Nagoya University, Toyokawa 442, Japan
3Faculty of Information Science, Hiroshima City University, Hiroshima 731-31, Japan
4School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom

Tóm tắt

The primary photochemistry of gas phase dichlorine monoxide (Cl2O) and of hypochlorous acid (HOCl) following excitation at 235 nm has been investigated using photofragment ion imaging to obtain the recoil velocity and angular distributions of the ground (2P3/2) and spin-orbit excited (2P1/2) atomic chlorine products. In the case of Cl2O, both Cl spin-orbit products exhibit angular distributions characterized by an anisotropy parameter, β=1.2±0.2, consistent with previous interpretations of the ultraviolet (UV) absorption spectrum of Cl2O which associate the broad intense absorption feature peaking at λ∼255 nm with excitation to a (bent) dissociative state of B21(C2v) symmetry. The recoil velocity distributions of the two Cl spin-orbit products are markedly different. The ground state atoms (which constitute >90% of the total Cl atom yield) are partnered by ClO fragments carrying significantly higher average levels of internal excitation. The slowest Cl atoms are most readily understood in terms of three body fragmentation of Cl2O to its constituent atoms. These findings are rationalized in terms of a model potential energy surface for the 1 1B2 state, which correlates diabatically with ClO(X) radicals together with a spin-orbit excited Cl atom, with efficient radiationless transfer to one (or more) lower energy surfaces at extended Cl-O bond lengths accounting for the dominance of ground state Cl atom fragments. The image of the ground state Cl atoms resulting from photolysis of HOCl at 235 nm is consistent with parent excitation via a transition for which the dipole moment is closely aligned with the Cl-O bond, followed by prompt dissociation (β=1.7±0.2) with the bulk of the excess energy partitioned into product recoil. Such conclusions are consistent with the results of laser induced fluorescence measurements of the OH(X) products resulting from 266 nm photodissociation of HOCl which reveal OH(X) products in both spin-orbit states, exclusively in their zero-point vibrational level, and carrying only modest levels of rotational excitation (well described by a Boltzmann distribution with Trot∼750±50 K).

Từ khóa


Tài liệu tham khảo

1987, Science, 238, 1253, 10.1126/science.238.4831.1253

1978, J. Phys. Chem., 82, 2410, 10.1021/j100511a013

1986, J. Phys. Chem., 90, 5578, 10.1021/j100280a021

1992, J. Photochem. Photobiol., A, 66, 133, 10.1016/1010-6030(92)85207-B

1990, J. Chem. Soc., Faraday Trans., 86, 3831, 10.1039/ft9908603831

1993, J. Chem. Soc., Faraday Trans., 89, 1623, 10.1039/ft9938901623

1994, J. Chem. Soc., Faraday Trans., 91, 17

1977, Chem. Phys. Lett., 52, 442, 10.1016/0009-2614(77)80483-1

1992, Chem. Phys., 135, 75

1992, J. Phys. Chem., 96, 2103, 10.1021/j100184a017

1993, J. Phys. Chem., 97, 2602, 10.1021/j100113a022

1994, J. Chem. Phys., 101, 10416, 10.1063/1.467922

1996, J. Chem. Phys., 104, 563, 10.1063/1.470852

1995, Chem. Phys. Lett., 247, 173, 10.1016/0009-2614(95)01191-2

1981, J. Mol. Spectrosc., 86, 241, 10.1016/0022-2852(81)90122-3

1976, J. Chem. Eng. Data, 21, 411, 10.1021/je60071a030

1979, J. Phys. Chem., 83, 1604, 10.1021/j100475a010

1991, J. Quant. Spectrosc. Radiat. Transf., 46, 55, 10.1016/0022-4073(91)90066-Y

1996, J. Chem. Phys., 104, 2857, 10.1063/1.471109

1997, Chem. Phys. Lett., 275, 298, 10.1016/S0009-2614(97)00774-4

1931, Z. Phys. Chem. Abt. B, 15, 127

1933, Z. Phys. Chem. Abt. B, 20, 375

1957, Proc. R. Soc. London, Ser. A, 243, 24, 10.1098/rspa.1957.0199

1971, Proc. R. Soc. London, Ser. A, 323, 401, 10.1098/rspa.1971.0112

1989, J. Phys. Chem., 93, 4764, 10.1021/j100349a017

1994, J. Chem. Phys., 100, 8055, 10.1063/1.466799

1991, Pure Appl. Chem., 63, 1449, 10.1351/pac199163101449

1985, J. Phys. Chem. Ref. Data, 14, Suppl., 1

1996, J. Phys. Chem., 100, 14

1997, J. Chem. Phys., 107, 3237

1987, J. Chem. Phys., 87, 1445, 10.1063/1.453276

1995, Annu. Rev. Phys. Chem., 46, 335, 10.1146/annurev.pc.46.100195.002003

1985, Chem. Phys. Lett., 118, 88, 10.1016/0009-2614(85)85272-6

1996, J. Phys. Chem., 100, 12, 10.1021/jp953184q

1996, Chem. Phys. Lett., 258, 159, 10.1016/0009-2614(96)00617-3

1995, J. Chem. Phys., 101, 6811

1997, J. Chem. Phys., 107, 10582, 10.1063/1.474222

1957, Inorg. Synth., 5, 156, 10.1002/9780470132364.ch44

1980, J. Phys. Chem., 84, 821, 10.1021/j100445a004

1995, J. Phys. Chem., 99, 16

1996, J. Chem. Soc., Faraday Trans., 92, 5181, 10.1039/ft9969205181

1974, IEEE Trans. Nucl. Sci., 21, 2

1993, J. Mol. Spectrosc., 162, 307, 10.1006/jmsp.1993.1286

1993, Chem. Phys. Lett., 209, 459, 10.1016/0009-2614(93)80117-8

1997, J. Chem. Phys., 107, 10344, 10.1063/1.474227

1962, J. Quant. Spectrosc. Radiat. Transf., 2, 97, 10.1016/0022-4073(62)90061-4

1995, J. Chem. Phys., 102, 3238, 10.1063/1.468634

1996, J. Phys. Chem., 100, 19853, 10.1021/jp9609343