The thermal and transport characteristics of nanofluids in a novel three‐dimensional device

Canadian Journal of Chemical Engineering - Tập 92 Số 12 - Trang 2185-2201 - 2014
Jogender Singh1, Neha Choudhary1, K.D.P. Nigam1
1Chemical Engineering Department Indian Institute of Technology Delhi Hauz Khas New Delhi 110016

Tóm tắt

The augmentation in heat transfer can be achieved by improving either transport phenomena with geometry perturbation or thermal conductivity of the fluid itself. In the present study, the simultaneous effects of both the geometry and improved thermal conductivity have been tried on heat transfer enhancement by using two different nanofluids (Al2O3‐water and TiO2‐water). An innovative three‐dimensional device called a coiled flow inverter (CFI) is proposed for the process intensification. The CFI is made up of helical coiled tube, which is bent periodically to 90 ° at equidistant length. In addition to a CFI, the performance characteristics of helical coil and straight tube have been investigated. The Reynolds numbers are in the range of 25–4000, while the nanoparticle volume fraction varied from 0.25–4 %. It was noted that the heat transfer in a CFI improved considerably as compared to helical coil and straight tube of same dimension. The Nusselt number in helical coil augments by 2.5 times to that of straight tube. In the CFI, the Nusselt number further enhanced by 23–35 % as compared to helical coil, with 0–4 % increase in the nanoparticle volume fractions. The new correlations are developed to predict the Nusselt number and friction factor for the flow of nanofluids in the CFI. The number of merit in the CFI to that of straight tube are 1.6–1.8 times, with 0–4 % nanoparticle volume fractions. The present study may motivate the design and development of novel compact heat exchangers as well as a new‐generation microfluidic device.

Từ khóa


Tài liệu tham khảo

10.1080/14786440708564324

10.1080/14786440408564513

10.1016/j.ijheatmasstransfer.2005.05.037

10.1016/j.cep.2007.02.026

10.1021/ie701760h

10.1016/j.ces.2009.09.053

Maxwell J. C., 1873, Electricity and Magnetism, 1

Maxwell J. C., 1904, A Treatise on Electricity and Magnetism, 435

Liu K. V., 1988, Argonne National Laboratory Report, 15

S. U. S.Choi J. A.Eastman Enhancing thermal conductivity of fluid with nanoparticles Energy Technology Division and Materials Science Division Argonne National Laboratory Argonne USA ANL/MSD/CP/84938 1995.

10.1115/1.2825978

10.2963/jjtp.7.227

10.1080/08916159808946559

10.1016/S0142-727X(99)00067-3

10.1115/1.1532008

10.1016/j.ijheatmasstransfer.2008.10.023

10.3390/en20100097

10.1016/j.applthermaleng.2008.03.007

10.1016/j.applthermaleng.2009.07.003

10.5516/NET.2009.41.9.1157

10.1016/j.applthermaleng.2011.10.023

10.1016/j.applthermaleng.2006.09.028

10.1016/S0017-9310(03)00156-X

10.1016/j.ijheatmasstransfer.2005.01.029

Akbari M., 2008, Int. J. Heat Mass Tranfer, 29, 545

10.1016/j.applthermaleng.2006.10.034

Akbarinia A., 2008, Int. J. Heat Mass Transfer, 29, 229

Akbarinia A., 2009, Int. J. Heat Mass Transfer, 30, 706

10.1007/s12206-012-1206-9

10.1186/1556-276X-6-179

10.1186/1556-276X-6-376

10.1016/j.applthermaleng.2010.12.036

10.1002/aic.690300303

10.1016/j.ces.2007.01.032

10.1021/ie300516w

10.1021/ie0608399

10.1063/1.1700493

10.1016/j.icheatmasstransfer.2013.02.008

10.1016/j.ijheatfluidflow.2005.02.004

10.1016/j.ijheatmasstransfer.2012.02.040

10.1016/j.ijheatfluidflow.2009.02.003

Tavman M. I., 2008, Arch. Mater. Sci. Eng., 34, 99

10.1063/1.3187732

10.1063/1.3182807

10.15282/ijame.3.2011.4.0023

10.1016/j.icheatmasstransfer.2009.02.011

10.1016/j.ijheatmasstransfer.2009.12.016

10.1007/BF02704086

10.1016/j.expthermflusci.2011.11.007

10.1016/j.powtec.2013.05.010

10.1016/j.ijheatmasstransfer.2008.10.025

Jwo C. C., 2009, J. Chinese. Soc. Mech. Eng., 30, 511

10.1016/j.ijheatfluidflow.2008.01.004

10.1115/1.1994880