The theory of Cosserat points applied to the analyses of wrinkled and slack membranes

Biswanath Banerjee1, Amit Shaw1, Debasish Roy1
1Structures Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boerner EFI, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a Cosserat point extension to initially distorted elements for 2D plane strain. Int J Numer Methods Eng 71(4): 454–472

Epstein M, Forcinito Mario A (2001) Anisotropic membrane wrinkling: theory and analysis. Int J Solids Struct 38: 5253–5272

Green AE, Naghdi PM (1991) A thermomechanical theory of a Cosserat point with application to composite materials. Q J Mech Appl Math 44: 335–355

Green AE, Naghdi PM, Wenner ML (1974a) On the theory of rods. Part I. Derivations from the three-dimensional equations. Proc R Soc Lond A 337: 451–483

Green AE, Naghdi PM, Wenner ML (1974b) On the theory of rods. Part II. Developments by direct approach. Proc R Soc Lond A 337: 485–507

Lu K, Accorsi M, Leonard J (2001) Finite element analysis of membrane wrinkling. Int J Numer Methods Eng 50: 1017–1038

Kang S, Im S (1997) Finite element analysis of wrinkling membranes. ASME J Appl Mech 64: 263–269

Kang S, Im S (1999) Finite element analysis of dynamic response of wrinkling membranes. Comput Methods Appl Mech Eng 173: 227–240

Loehnert S, Boerner EFI, Rubin MB, Wriggers P (2005) Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36: 255–265

Mansfield EH (1968) Tension field theory: a new approach which shows its duality with inextensional theory. In: Proc. XII Int. Cong. Appl. Mech., pp 305–320

Mansfield EH (1970) Load transfer via a wrinkled membrane. Proc R Soc Lond A 316: 269–289

Miller RK, Hedgepeth JM, Weingarten VI, Das P, Kahyai S (1985) Finite element analysis of partly wrinkled membranes. Comput Struct 20: 631–639

Miyamura T (2000) Wrinkling on stretched circular membrane under in-plane torsion: bifurcation analyses and experiments. Eng Struct 23: 1407–1425

Miyazaki Y (2005) Wrinkle/slack model and finite element dynamics of membrane. Int J Num Methods Eng 66(7): 1179–1209

Nadler B, Rubin MB (2003a) A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int J Solids Struct 40: 4585–4614

Nadler B, Rubin MB (2003b) Determination of hourglass coefficients in the theory of a Cosserat point for nonlinear elastic beams. Int J Solids Struct 40: 6163–6188

Naghdi PM (1972) The theory of plates and shells. In: Truesdell C(eds) S. Flugge’s Handbuch der Physik, vol. VIa/2. Springer, Berlin, pp 425–640

Pipkin AC (1986) The relaxed energy density for isotropic elastic membrane. IMA J Appl Math 36: 85–99

Raible T, Tegeler K, Löhnert S, Wriggers P (2005) Development of a wrinkling algorithm for orthotropic membrane materials. Comput Methods Appl Mech Eng 194: 2550–2568

Roddeman DG, Drukker J, Oomens CWJ, Janssen JD (1987) The wrinkling of thin membranes. Part I. Theory. Part II. Numerical analysis. ASME J Appl Mech 54: 884–892

Rubin MB (1985b) On the numerical solution of one dimensional continuum problems using the theory of a Cosserat point. ASME J Appl Mech 52: 373–378

Rubin MB (1985a) On the theory of Cosserat point and its application to the numerical solution of continuum problems. ASME J Appl Mech 52: 368–372

Rubin MB (2000) Cosserat theories: shells, rods and points. In: Solid mechanics and its applications, vol 79. Kluwer, The Netherlands

Rubin MB (1995) Numerical solution of two- and three-dimensional thermomechanical problems using the theory of a Cosserat point, J. of Math. and Physics (ZAMP) 46, Special Issue, S308-S334. In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids. Brikhauser Verlag, Basel

Shaw A, Roy D (2007a) A NURBS-based error reproducing Kernel method with applications in solid mechanics. Comput Mech 40(1): 127–148

Shaw A, Roy D (2007b) Improved procedures for static and dynamic analyses of wrinkled membranes. ASME J Appl Mech 74(3): 590–594

Shaw A, Roy D (2007c) Analyses of wrinkled and slack membranes through an error reproducing mesh-free method. Int J Solids Struct 44(11–12): 3939–3972

Stanuszek M (2003) FE analysis of large deformations of membranes with wrinkling. Finite Elements Anal Des 39: 599–618

Stein M, Hedgepeth JM (1961) Analysis of partly wrinkled membranes. Tech. Rep. NASA TN D-813

Wagner H (1929) Flat sheet metal girder with very thin metal web. In Zeitschriftfür Flugtechnik und Motorluftschiffahrt, 20

Wu CH (1978) Nonlinear wrinkling of nonlinear membranes of revolution. ASME J Appl Mech 45: 533–538