The tectonic regime along the Andes: Present‐day and Mesozoic regimes
Tóm tắt
The analyses of the main parameters controlling the present Chile‐type and Marianas‐type tectonic settings developed along the eastern Pacific region show four different tectonic regimes: (1) a nearly neutral regime in the Oregon subduction zone; (2) major extensional regimes as the Nicaragua subduction zone developed in continental crust; (3) a Marianas setting in the Sandwich subduction zone with ocean floored back‐arc basin with a unique west‐dipping subduction zone and (4) the classic and dominant Chile‐type under compression. The magmatic, structural and sedimentary behaviours of these four settings are discussed to understand the past tectonic regimes in the Mesozoic Andes based on their present geological and tectonic characteristics. The evaluation of the different parameters that governed the past and present tectonic regimes indicates that absolute motion of the upper plate relative to the hotspot frame and the consequent trench roll‐back velocity are the first order parameters that control the deformation. Locally, the influences of the trench fill, linked to the dominant climate in the forearc, and the age of the subducted oceanic crust, have secondary roles. Ridge collisions of seismic and seismic oceanic ridges as well as fracture zone collisions have also a local outcome, and may produce an increase in coupling that reinforces compressional deformation. Local strain variations in the past and present Andes are not related with changes in the relative convergence rate, which is less important than the absolute motion relative to the Pacific hotspot frame, or changes in the thermal state of the upper plate. Changes in the slab dip, mainly those linked to steepening subduction zones, produce significant variations in the thermal state, that are important to generate extreme deformation in the foreland. Copyright © 2009 John Wiley & Sons, Ltd.
Từ khóa
Tài liệu tham khảo
Äberg G, 1984, Marginal Basin Geology, 185
Allen RB, 1982, Geología de la Cordillera Sarmiento, Andes patagónicos entre los 51°00′ y 52°15′ lat. Sur, Maghallanes, Chile. Servicio Nacional de Geología y Minería, SERNAGEOMIN, Boletín, 38, 1
Auboin J, 1984, Subduction and Orogeny. The Barbade accretionary prism and the middle America trench subduction without accretion: two shallow responses to the subduction, Compte Rendús Academie de Sciences de París, 298, 351
Auboin JA, 1973, Esquisse paleogeographique et structurale des Andes Meridionales, Revue de Géographie Physique et de Geologie Dynamique, 15, 11
Bell MC, 1995, Slope apron deposits of the Lower Jurassic Los Molles Formation, Central Chile, Revista Geologica de Chile, 22, 103
Charrier R, 1984, Areas subsidentes en el borde occidental de la cuenca de tras arco jurásico‐cretácica, Cordillera Principal Chilena entre 34° y 34°30′S, 9°Congreso Geológico Argentino, Actas, 2, 107
Dalziel IWD, 1988, Tectonics of the Scotia arc, Antarctica, 28° International Geological Congress, Fieldtrip guide‐book, 180, 1
Dewey JF, 1980, The Continental Crust and its Mineral Deposits, 553
Dickinson WF, 1979, Structure and stratigraphy of forearc regions, American Association of Petroleum Geologists, Bulletin, 63, 2
Dott RH, 1982, Antarctic Geoscience, 193
EissenJ‐P BourdonE BeateB HidalgoS CottonJ.2002.Second partial melting stage of a slab‐melt metasomatized mantle at Sumaco Volcano (Northern volcanic zone) Ecuador.5th. International Symposium Andean Geodynamics (Toulouse)Abstract:199–202.
Ghidella ME, 2007, Plate kinematic models for Antarctica during Gondwana break‐up: a review, Revista de la Asociación Geológica Argentina, 62, 636
Godoy E, 1978, Observaciones en el complejo ofiolítico de isla Milne Edwards – Cerro Tortuga (Isla Navarino), Magallanes, Chile, 7th Congreso Geológico Argentino, Actas, 2, 625
Godoy EP, 1979, Las ofiolitas magallánicas: evidencias geológicas de una prolongación ensiálica de una rama abandonada de la dorsal atlántica, 2 Congreso Geológico Chileno, Actas, 1, 163
Guillaume B, 2009, Variations of slab dip and overriding plate tectonics during subduction: insights from analogue modeling, Tectonophysics, 469, 1
Harrington HJ, 1962, Paleogeographic development of South America, American Association of Petroleum Geologists, Bulletin, 46, 1773
Hervé F, 2006, Antarctica, Contributions to Global Earth Sciences, 217
Hervé F, 2007, The Late Jurassic magmatic burst in the Andes of southwestern Patagonia, 3 Simposio Argentino del Jurásico, Resúmenes, 45
Introcaso A, 2000, Study of the crust on the Peruvian Andean section from gravity data and geoid undulations, Bollettino di Geodesia e Scienze Affini, 59, 161
IntrocasoA CabassiIR.2002.Crustal thickness and general isostatic balance of Peruvian Andes from observed and predicting shortening.5th International Symposium on Andean Geodynamics Proceedings:315–317.
Jaillard E, 2000, Tectonic Evolution of South America, 481
Jordan TE, 1995, Retroarc foreland and related basins, 331
Jordan T, 1983, Mountain building model: The Central Andes, Episodes, 1983, 20, 10.18814/epiiugs/1983/v6i3/005
Kay SM, 2009, Backbone of the Americas, 229
Kay SM, 1999, Geology and Mineral Deposits of Central Andes, 27
Kukowski N, 2001, Tectonic erosion at the Peruvian margin: evidence from swath bathymetry data and process identification from 3D sandbox analog modeling, Eos (Transactions, American Geophysical Union), 82
Leat PT, 2003, Intraoceanic Subduction Systems: Tectonic and Magmatic Processes, 285
Legarreta L, 1991, Jurassic‐Cretaceous marine oscillations and geometry of back‐arc basin fill, central Argentine Andes, International Association of Sedimentology, Special Publication, 12, 429
Marinovic N, 1995, Hoja Aguas Blancas, Región de Antofagasta. Servicio Nacional de Geología y Minería, Santiago, Carta Geológica de Chile, 70
Mpodozis C, 1992, Extensión a gran escala en el Cretácico del norte de Chile (Puquios‐Sierra Fraga, 27°S) y su significado para la evolución de los Andes, Revista Geológica de Chile, 19, 167
Mpodozis C, 1990, Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources, 59
Mpodozis C, 2008, Tectónica jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones?, Revista de la Asociación Geológica Argentina, 63, 481
Naranjo JA, 1984, Hojas Taltal y Chañaral. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 1, 62
Nelson TH, 1972, Mainstream mantle convection: a geologic analysis of plate motion, American Association of Petroleum Geologists Bulletin, 56, 226
Nyström JO, 1988, Geochemistry of volcanic rocks in a traverse through Nicaragua, Revista Geológica de América Central, 8, 77
Olivero EB, 2009, The stratigraphy of Cretaceous mudstones in the eastern Fuegian Andes: new data from body and trace fossils, Revista de la Asociación Geológica Argentina, 64, 60
PardoM MonfretT VeraE EisenbergA YánezG TriepE.2003.Cambio en la subduccion de la placa de Nazca de plana a inclinada bajo Chile central y Argentina: Datos sismológicos preliminares.10th Congreso Geológico Chileno Actas(electronic files).
Petford N, 1995, Volcanism Associated with Extension at Consuming Plate Margins, 233
Ramos VA, 1970, Estratigrafía y estructura de la Sierra de Los Colorados, provincia de La Rioja, Revista de la Asociación Geológica Argentina, 25, 359
RamosVA.1985. El Mesozoico de la Alta Cordillera de Mendoza: reconstrucción tectónica de sus facies. Argentina.4° Congreso Geológico Chileno Actas1:104–118.
Ramos VA, 2009, Backbone of the Americas, 31
Ramos VA, 2000, Tectonic Evolution of South America
Ramos VA, 2004, Thrust Tectonics and Hydrocarbon Systems, 30
Ranero CR, 1997, The tectonic structure of the Chilean convergent plate boundary between 32°–34°S (offshore Valparaiso), 8th Congreso Geológico Chileno, Actas, 3, 1834
Rivano S, 1985, Geocronología K‐Ar de las rocas intrusivas entre los 31°–32° latitud sur, Chile, Revista Geológica de Chile, 24, 63
Scheuber E, 1994, Tectonics of the Southern Central Andes, 7
Skewes MA, 2002, The giant El Teniente breccia deposit: hypogene copper distribution and emplacement, Society of Economic Geologists, Special Publication, 9, 299
SomozaR.1995.Paleomagnetismo de rocas cretácicas de la Patagonia y la curva de deriva polar aparente de América del Sur: implicancias geocinemáticas y tectónicas.PhD Thesis Universidad de Buenos Aires.
Stern CR, 2003, Ophiolites in Earth History, 1
Stern CR, 1991, Geologic evidence for subduction erosion along the west coast of central and Northern Chile, 6 Congreso Chileno Geológico Chileno, Actas, 1, 205
Thomson ST, 2002, Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: an appraisal based on fission‐ track results from th transpressional intra‐arc Liquiñe‐Ofqui fault zone, Geological Society of America, Bulletin, 114, 1159, 10.1130/0016-7606(2002)114<1159:LCGATE>2.0.CO;2
Tonarini S, 2009, Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas, Geochemistry, Geophysics, Geosystems, 8, 1
Tunik MA, 2008, Análisis y edad de la sección calcárea de la Formación Las Chilcas (Chile) y sus implicancias para la correlación con unidades de Argentina, Revista de la Asociación Geológica Argentina, 63, 363
Vallejo C, 2009, Backbone of the Americas, 197
Vicente JC, 2005, Dynamic paleogeography of the Jurassic Andean Basin: pattern of transgression and localization of main straits through the magmatic arc, Revista de la Asociación Geológica Argentina, 60, 221